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Abstract

The dissipation function is a key quantity in nonequilibrium statistical mechanics. It was

originally derived for use in the Evans-Searles Fluctuation Theorem, which quantitatively

describes thermal fluctuations in nonequilibrium systems. It is now the subject of a number

of other exact results, including the Dissipation Theorem, describing the evolution of a sys-

tem in time, and the Relaxation Theorem, proving the ubiquitous phenomena of relaxation

to equilibrium. The aim of this work is to study the significance of the dissipation function,

and examine a number of exact results for which it is the argument.

First, we investigate a simple system relaxing towards equilibrium, and use this as a

medium to investigate the role of the dissipation function in relaxation. The initial system

has a non-uniform density distribution. We demonstrate some of the existing significant

exact results in nonequilibrium statistical mechanics. By modifying the initial conditions of

our system we are able to observe both monotonic and non-monotonic relaxation towards

equilibrium.

A direct result of the Evans-Searles Fluctuation Theorem is the Nonequilibrium Partition

Identity (NPI), an ensemble average involving the dissipation function. While the derivation

is straightforward, calculation of this quantity is anything but. The statistics of the average

are difficult to work with because its value is extremely dependent on rare events. It is often

observed to converge with high accuracy to a value less than expected. We investigate the

mechanism for this asymmetric bias and provide alternatives to calculating the full ensemble

average that display better statistics. While the NPI is derived exactly for transient systems

it is expected that it will hold in steady state systems as well. We show that this is not true,

regardless of the statistics of the calculation.

A new exact result involving the dissipation function, the Instantaneous Fluctuation

Theorem, is derived and demonstrated computationally. This new theorem has the same

form as previous fluctuation theorems, but provides information about the instantaneous

value of phase functions, rather than path integrals. We extend this work by deriving an

approximate form of the theorem for steady state systems, and examine the validity of the

assumptions used.
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Chapter 1

Introduction

The Second Law of Thermodynamics predicts irreversible macroscopic behaviour. However,

Newton’s equations of motion, describing the behaviour of individual particles, are time re-

versible. If a trajectory satisfies the equations of motion, then the antitrajectory, where all of

the momenta are reversed, also satisfies the equations of motion. If you run a movie of parti-

cles in motion backwards, the dynamics would still satisfy Newton’s equations. In contrast,

by observing the motion of particles you can often tell which direction time is running. For

example, it is obvious if time is running backwards when observing a game of snooker. The

question of how macroscopic irreversibility is derived from reversible microscopic behaviour

was unsolved for over 100 years, and is referred to as Loschmidt’s Paradox[1, 2].

Statistical mechanics is used to understand macroscopic behaviour from microscopic

equations of motion. It considers ensembles, where every ensemble member has a different

microstate, but the same macrostate. The microstate is determined by the position and

momentum of each particle in the system, while the macrostate is given by parameters such

as the temperature, energy, pressure or volume of the system. The time reversible equations

of motion are then used to study the evolution of each of the ensemble members, and the

average behaviour of the ensemble can give us macroscopically relevant information.

Boltzmann’s H-theorem was an attempt at proving the Second Law of Thermodynamics

using statistical mechanics[3]. However, Loschmidt objected to the derivation on the grounds

that if a phase space trajectory satisfies the equations of motion, then its antitrajectory must

also satisfy the equations of motion. “Apparently, if the instantaneous velocities of all the

elements of any given system are reversed, the total course of the incidents must generally

be reversed for each given system”[1, 4]. So, if the initial phase space distribution is even in

the momenta, the Boltzmann H-function could not decrease monotonically as required by

Boltzmann’s H-theorem[4].

This problem has been avoided in the past by noting that the Second Law of Thermo-

dynamics is only applicable in the large system size limit. Boltzmann stated that “as soon

as one looks at bodies of such small dimension that they contain only a few molecules, the

validity of this theorem [the Second Law of Thermodynamics] must cease”[5, 6]. Maxwell

also commented on the range of applicability of the Second Law of Thermodynamics. “Hence

the second law of thermodynamics is continually being violated and that to a considerable
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extent in any sufficiently small group of molecules belonging to any real body. As the

number of molecules in the group is increased, the deviations from the mean of the whole

become smaller and less frequent; and when the number is increased till the group includes

a sensible portion of the body, the probability of a measurable variation from the mean oc-

curring in a finite number of years becomes so small that it may be regarded as practically

an impossibility”[7, 8, 9].

The derivation of the Evans-Searles Fluctuation Theorem (ES-FT) resolves Loschmidt’s

Paradox by describing how irreversibility develops in a system governed by time-reversible

equations of motion. It explicitly considers bundles of trajectories and their conjugate

antitrajectory bundles[10]. Seemingly contrary to Loschmidt’s objection, the existence of

antitrajectories is essential to the derivation of time irreversible behaviour, however it is

necessary to consider the probability of these conjugate trajectory bundles, rather than

merely their existence. The paradox of time reversible equations of motion leading to time

irreversible behaviour is resolved by assuming causality, events in the future are caused by

events in the past, rather than the other way around. This breaks the time symmetry

of the system. The Evans-Searles Fluctuation Theorem describes how a system can be

reversible for short observation times, but can become irreversible for longer times[10]. This

irreversibility grows with the observation time and system size.

The ES-FT is an exact result in nonequilibrium statistical mechanics, giving quantitative

information about a system[11, 4, 12]. It gives the probability of particular fluctuations in

a system, determined by the value of the dissipation function, a quantity defined for use in

the ES-FT. The theorem quantifies the probability of Second Law violating trajectories. As

the observation time increases, fluctuations in one direction become overwhelmingly more

probable, and irreversible behaviour is recovered. This theorem has been demonstrated in

computer simulations[13, 14] and experiments[15, 16].

The argument of the ES-FT is the dissipation function. This is, in general, a dimension-

less dissipated energy[10]. It was derived to simplify the Evans-Searles Fluctuation Theorem

and it takes the form of a path integral, that is, it is a function of the path a given trajectory

takes through phase space. The dissipation function can be thought of as a measure of the

irreversibility of a trajectory. The ES-FT gives the probability of the dissipation function

taking on opposite values. The dissipation function is odd under time reversal, so the value

of the dissipation function for a trajectory is the negative of its value for the correspond-

ing antitrajectory. Thus, the fluctuation theorem gives the probability of particular sets of

trajectories relative to the probability of their antitrajectories.

In addition to the Evans-Searles Fluctuation Theorem the dissipation function is the

argument of a number of more recent exact results in nonequilibrium statistical mechanics.

Derived directly from the ES-FT, the Second Law Inequality makes the irreversible behaviour

expected explicit[12]. Another result, the Dissipation Theorem describes how a system will

evolve with time[17, 18]. It gives the time evolving distribution of the system and the time

evolving average of arbitrary phase functions, in terms of the dissipation function. This

shows how the dissipation function plays a central role in nonlinear response theory. One

of the most significant results involving the dissipation function is the proof of relaxation to

equilibrium in systems satisfying a number of reasonable constraints. This is known as the
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Relaxation Theorem[19, 20], and provides the form of the equilibrium distribution, as well

as proving that this distribution is the unique dissipationless time-independent state. Any

other distribution relaxes to the equilibrium distribution.

The prominence of the dissipation function in all of these important results demonstrates

its significance to nonequilibrium statistical mechanics. The primary purpose of this thesis

is to examine the role of the dissipation function in these exact results. We will do this using

theoretical and computational methods.

We will start by applying the most significant results involving the dissipation function

to a system relaxing towards equilibrium. We use a system relaxing from a non-uniform

density distribution initially, which is simple to study because no field is applied during

the relaxation. As well as using the dissipation function to monitor the relaxation, we can

also study it intuitively by following the density distribution function. Both monotonic and

non-monotonic relaxation will be investigated.

We will then move onto another exact result involving the dissipation function, which has

been more problematic to demonstrate in simulation and experiment. This result is known

as the Nonequilibrium Partition Identity (NPI), and is derived directly from the ES-FT[21].

A range of approaches are used to investigate the difficulty in calculating this exact result.

We extend this work to the less studied steady state NPI, where we begin by using similar

approaches to determine its value.

Finally, we introduce a new exact result in nonequilibrium statistical mechanics, which

has the dissipation function as its argument. This Instantaneous Fluctuation Theorem pro-

vides different information to previous fluctuation relations. We also derive an approximate

steady state form, and investigate its validity.

3
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Chapter 2

Theoretical Background: The

Dissipation Function

The dissipation function is relevant to nonequilibrium systems, and is the measure of the

irreversibility of a process. It was defined to simplify the Evans-Searles Fluctuation Theorem,

which will be discussed in this chapter when we give the definition of the dissipation function.

While being defined for use in this specific theorem, it appears in many other exact results

for nonequilibrium systems, such as the Dissipation Theorem, the Relaxation Theorem and

the Second Law Inequality. It is central to the modern study of nonequilibrium statistical

mechanics.

2.1 Equilibrium Ensemble

A fundamental concept in statistical mechanics is that of an ensemble[22], first conceived by

Boltzmann[23] and described succinctly by Maxwell. "I have found it convenient, instead of

considering one system of material particles, to consider a large number of systems similar to

each other in all respects, except the initial circumstances of the motion, which are supposed

to vary from system to system, the total energy being the same in all"[7]. That is, a set of

systems which all share the same macrostate, but have different microstates. The macrostate

is typically specified through the values of the temperature or the energy, the pressure or the

volume, and the number of particles or the chemical potential. In this thesis we will only

consider systems with a fixed volume and number of particles. For each macrostate there

are many possible microstates. Each of these can be specified at a given time by their phase

space position, that is, the position and momenta of every particle. Each microstate in an

ensemble is referred to as an ensemble member. A system is a set of initial microstates,

defined by some macrostate.

Feynman defined equilibrium as the state where “all the fast things have happened but

the slow things have not”[24]. There are no macroscopic changes in the system and there are

no net macroscopic flows of energy or matter. A system with no applied external forces will

spontaneously relax towards equilibrium. Equilibrium can be defined as a state preserved
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by the dynamics, in which trajectories and their antitrajectories are equally likely to occur.

However, the study of relaxation to this state is difficult, and is clearly not possible for

systems with deterministic equations of motion (since if the system was initially out of

equilibrium, it will always return to that state under time reversal). For the purpose of this

thesis we will define equilibrium as the point when the measured properties of the system

have ceased to change.

If the equilibrium system is isolated, such that the energy of the system is fixed, it is said

to be in a microcanonical distribution. All possible microstates in this distribution have the

same probability. Alternatively, the equilibrium system may be in contact with a heat bath,

such that the temperature of the system is fixed. The heat bath is a reservoir much larger

than the system of interest, such that the system of interest does not change the temper-

ature of the heat bath. It adds or removes heat from the system, so that the temperature

may be kept constant. This equilibrium distribution is called a canonical ensemble, and is

described by the Boltzmann distribution[25]. The probability of a particular microstate in

this distribution is determined from its energy,

f(Γ) =
e−

H(Γ)
kBT

´

dΓe−
H(Γ)
kBT

(2.1)

where Γ is the phase space position specifying all momenta and positions of every particle,

f(Γ) is the phase space density, H(Γ) is the energy of state Γ, kB is Boltzmann’s constant

and T is the temperature of the system.

We can relate the temperature to the kinetic energy, KE, using the Equipartition The-

orem. It is the idea that in equilibrium, energy is distributed equally among all degrees of

freedom[25]. For an ideal gas there are no configurational components, so it predicts that

the kinetic energy of each particle is given by 3kBT/2, meaning that the total kinetic energy

is given by

KE =
N
∑

i

1

2m
pi · pi =

3N

2
kBT (2.2)

where pi is the momentum of particle i and m is the particle mass. This is for a three

dimensional system. For systems that do not contain polyatomic particles this is a suitable

equation for the kinetic temperature.

The ergodic hypothesis, postulated by Boltzmann, states that ensemble averages in the

system are equal to time averages[26]. In an ergodic system, a trajectory starting anywhere

in the distribution samples all of phase space in the distribution. It does not become trapped

in some sub-region of phase space. This is a useful property for computer simulations, where

analysis based on ensemble averages is often applied to data obtained from time averages.

It is also a necessary condition used in the derivation of many of the exact results we will

discuss.
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2.2 Equations of Motion and Thermostats

In this thesis we will restrict our studies to a deterministic classical mechanical description.

A microstate, or position in phase space, uniquely determines the path the system will take

from that point as it evolves with time. This path is called a trajectory, and is made up

of the phase space position of every point along this path. The trajectory is determined by

propagating the initial phase space position forward in time using Newton’s equations of

motion,

q̇i =
pi

m
,

ṗi = −
∂Φ

∂qi
≡ Fi (2.3)

where qi is the position of each particle i, pi is the momentum, Φ is the potential and Fi is

the force on each particle. This is due to the interparticle forces. If the system with these

equations of motion satisfies the conditions of ergodicity and temporal correlation decay, it

will relax to the microcanonical distribution in equilibrium[19].

These equations of motion are time reversible. If the equations of motion are applied to

a particular point in phase space, Γ for a time t, a new point in phase space, StΓ is reached.

St is the time evolution operator. Time reversibility means that a mapping exists such that

if it is applied to StΓ, and we then run the equations of motion forwards for a time t, the

map of the original phase space position is reached. That is, StMT StΓ = MTΓ, where MT

is the time reversal map. For Newton’s equations of motion this time reversal map is simply

reversing all the momenta of the system, MT (q,p) = (q,−p). This procedure is equivalent

to running the equations of motion backwards in time from the point StΓ.

We can design equations of motion that keep the system at a constant temperature using

a mathematical formalism called a thermostat[27]. This acts like a heat bath in the system,

but is unphysical. However, the equations of motion are time reversible.

q̇i =
pi

m
,

ṗi = Fi − αSipi (2.4)

where α is the thermostat multiplier and Si is the switch which controls whether the thermo-

stat is turned on for each particle. This allows the artificial thermostat to be placed a long

distance from the system of interest. So, Si = 0 except when particle i is in the reservoir,

then Si = 1. Since the system of interest is physically separated from the details of the ther-

mostatting mechanism its artificial nature is irrelevant[28]. However, it has been observed

that separating the thermostated particles from the system of interest is not necessary for

most applications relevant to this thesis[29]. In this thesis we shall apply the thermostat to

all particles, so Si is always equal to unity.

The thermostat multiplier is determined by the constants of the system. In this thesis we

will use an isokinetic thermostat[30], where the form of the thermostat multiplier is derived
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to keep the kinetic energy of the system constant. The kinetic energy is given by

KE =
N
∑

i

1

2m
pi · pi. (2.5)

Let us say

Ki =
1

2m
pi · pi. (2.6)

Now, the change in the kinetic energy is given by

∂KE

∂t
=

N
∑

i

∂pi

∂t
·
∂Ki

∂pi
(2.7)

=
N
∑

i

ṗi ·
pi

m
. (2.8)

Using the equations of motion we have

∂KE

∂t
=

N
∑

i

(Fi − αpi) ·
pi

m
. (2.9)

For the kinetic energy to be constant, the derivative will be zero. This gives us

α =

∑N
i Fi · pi

∑N
i pi · pi

(2.10)

as the form of the thermostat multiplier. The equations of motion will now keep the kinetic

temperature of the system constant[27].

2.3 Nonequilibrium Systems

The dissipation function must be studied in nonequilibrium systems, since it is zero in

equilibrium[19]. A nonequilibrium system could be generated by starting a system in some

nonequilibrium distribution, and allowing it to relax. In this case the equations of motion

would be the same as above, given by Eq. (2.3) for an isoenergetic system, or in Eq. (2.4)

for an isokinetic system.

Another method to generate a nonequilibrium system is to apply an external field. A

system in contact with a heat bath, but subject to an external force can be described by

the equations of motion

q̇i =
pi

m
+ Ci ·Fe, (2.11)

ṗi = Fi + Di · Fe − αSipi (2.12)

where Fe is the external force and Ci and Di determine how it couples to the position and

momenta equations of motion respectively. This system will not approach an equilibrium.

If the thermostat was not applied, and the external field adds energy to the system, it would
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heat up without bound. Applying a thermostat to this system will allow it to approach a

steady state. The thermostat removes heat from the system that is added by the external

field. Steady states are some of the easiest nonequilibrium systems to study experimentally

because they are constant in time.

There are many possible driven nonequilibrium systems to chose from. For convenience

we will choose ones that can be easily modeled theoretically and computationally. Details

of these systems are given below.

2.3.1 Couette Flow

Planar couette flow is a physically realistic and computationally convenient system to study.

This system can be thought of as a fluid sheared between two plates, where we are only

concerned with the fluid in the interior of the system, far from the plates. It corresponds to

how the shear viscosity is measured in a rheometer. In the simulation of the system, there

are no walls, the shearing occurs in an infinite system. The shear flow can be described

with SLLOD equations of motion[27]. These equations of motion apply a gradient in the

x-velocities of the particles, dependent on their y-position in the system, and is equivalent

to boundary driven flow[31]. They effectively allow us to rewrite a boundary condition into

the equations of motion, as if it was an external field. The infinite shearing is facilitated

with periodic boundary conditions that shear with the system. These are discussed further

in Section 3.1.5.1.

The SLLOD equations of motion for couette flow are given by

q̇i =
pi

m
+ iγ̇Θ(t)yi, (2.13)

ṗi = Fi − iγ̇Θ(t)pyi − αpi (2.14)

where γ̇ is the strain rate applied to the system, yi is the y-component of the position of

the i-th particle and pyi is the y-component of the momenta of that particle. Θ(t) is the

Heaviside step function, used to turn the shear on at time t = 0. These equations of motion

are equivalent to

q̈i =
Fi

m
+ iγ̇δ(t)yi − α(q̇i − iγ̇yi) (2.15)

where δ(t) is the Dirac-delta function. This shows that the SLLOD equations of motion are

equivalent to an initial condition on the acceleration of the particles depending on their y

position.

We will use an isokinetic thermostat with this system. Its form is derived in the same

way as the field free case above, by setting the change in the kinetic energy with time to

zero,

∂KE

∂t
=

N
∑

i

ṗi ·
pi

m
= 0. (2.16)

9



Using the SLLOD equations of motion gives us a thermostat multiplier of

α =

∑N
i Fi · pi

∑N
i pi · pi

−
γ̇
∑N

i pyipxi
∑N

i pi · pi

(2.17)

once the shear has been turned on. Before time t = 0 the thermostat multiplier is the same

as for the field free equations of motion.

2.3.2 Colour Conductivity

Another possible method to perturb a system from equilibrium, in a way that is easy to

study, is to apply a colour field to the system[27]. That is, a perturbation to the potential

in the equations of motion of the particles. This acts like an external force applied to the

system, where the force is the derivative of the potential perturbation. Each particle is

assigned to one of two colours such that there are an equal number of particles of each

colour. The potential perturbation for each colour is the same magnitude, applied in the

opposite direction. This can be represented in the equations of motion as

q̇i =
pi

m
, (2.18)

ṗi = Fi + ciFe − αpi (2.19)

where Fe is the colour field and ci = (−1)i is the colour label. The colour field has no effect

on interparticle interactions. This system is similar to an electric field applied to charged

particles, as done in an electrophoresis experiment, except that the particles interact with

each other as if they are uncharged. This removes the need to model long range interactions,

making this system possible to study computationally with periodic boundary conditions

and a small number of particles. The force from the colour field, Fe, may be position

dependent.

We will consider an isokinetic system, so the thermostat multiplier is derived to keep the

kinetic energy constant. Its form will depend on the exact form of the colour field applied.

Derived in the same way as above we have

α =

∑N
i Fi · pi

∑N
i pi · pi

+

∑N
i ciFe · pi
∑N

i pi · pi

. (2.20)

2.4 The Fluctuation Theorem

The Evans Searles Fluctuation Theorem[11, 4, 12] allows us to calculate quantitative infor-

mation about a nonequilibrium system. It gives the probability of Second Law violating

trajectories in a system, over a specific time scale. This fluctuation theorem (FT) is ap-

plicable to small systems which are far from equilibrium, for short time scales. It shows

how irreversibility increases as the system size increases, and reduces to the Second Law of

Thermodynamics in the large system limit. It also provides a solution to the long stand-

ing paradox of how the Second Law of Thermodynamics, which specifies the direction the

system will move, can arise from time reversible equations of motion.
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2.4.1 Derivation of the Fluctuation Theorem

The fluctuation theorem is derived simply in the review article by Evans and Searles[4]. We

will provide an outline of this derivation below.

A crucial result used to derive the ES-FT is the phase space continuity equation. Let

M(t) be the total proportion of ensemble members inside an arbitrary phase space volume

VΓ at time t. We can write this in terms of the phase space density, f(Γ, t) as

M(t) =

ˆ

VΓ

dΓf(Γ, t). (2.21)

where f(Γ, t) is the phase space density at phase space position Γ, in the distribution at

time t. Now,
dM(t)

dt
=

ˆ

VΓ

dΓ
∂f(Γ, t)

∂t
. (2.22)

We can also consider the ensemble members which are flowing out of the surface around the

volume, SΓ. Since ensemble members are conserved, we know

dM(t)

dt
= −

ˆ

SΓ

dSΓf(Γ, t)Γ̇(Γ, t). (2.23)

Using the Divergence Theorem

dM(t)

dt
= −

ˆ

VΓ

dΓ
∂

∂Γ
[Γ̇f(Γ, t)], (2.24)

and since the volume is arbitrary

∂f(Γ, t)

∂t
= −

∂

∂Γ
· [Γ̇f(Γ, t)]. (2.25)

This is the phase space continuity equation, also referred to as Liouville’s Theorem. Using

this result we can write the streaming derivative of the phase space density as

df(Γ, t)

dt
=

∂f

∂t
+ Γ̇ ·

∂f

∂Γ
= −f

∂

∂Γ
· Γ̇ ≡ −fΛ (2.26)

where we define Λ ≡ (∂/∂Γ) · Γ̇ as the phase space expansion factor. The formal solution

to this differential equation is

f(StΓ, t) = exp

[

−
ˆ t

0
dsΛ(SsΓ)

]

f(Γ, 0) (2.27)

where f(StΓ, t) is the streaming density. Here St is the time evolution operator. It propa-

gates the phase space position Γ forwards by a time of t, using the equations of motion.

Consider a volume element of size δVΓ(Γ, 0) centered about the point Γ. A comoving

phase volume centered around the point StΓ will have the same number of ensemble members
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by construction. This allows us to write

δVΓ(Γ, 0)

δVΓ(StΓ, t)
=

f(StΓ, t)

f(Γ, 0)
(2.28)

= exp

[

−
ˆ t

0
dsΛ(SsΓ)

]

(2.29)

where we have used Eq. (2.26), the phase space continuity equation. The comoving volume

element, δVΓ(StΓ, t), is the volume of the same ensemble members in δVΓ(Γ, 0), after they

have evolved for a length of time t.

The fluctuation theorem considers conjugate sets of trajectory and antitrajectory bun-

dles. A bundle of trajectories is generated by taking all of the ensemble members within

some volume δVΓ(Γ, 0) and propagating them forward in time. Since our equations of mo-

tion are time reversible, for every trajectory there is an antitrajectory. The antitrajectory

is generated by applying a time reversal mapping to the final phase space position of the

trajectory, then propagating this phase space position forward in time for length t[32]. This

is equivalent to running the equations of motion backwards in time from the final point

reached in the trajectory. For the trajectory of length t that begins from the point Γ we

will denote the initial point of the antitrajectory as Γ∗ ≡ MT StΓ, where MT is the time

reversal mapping. The equations of motion must be time reversible[33, 34]. For the colour

field equations of motion MT (q,p, F e) = (q,−p, F e) and for SLLOD equations of motion

MT (q,p, γ̇) = (q,−p,−γ̇). The antitrajectory bundle is the set which contains all trajecto-

ries initiating from the time reversed map of the volume element δVΓ(StΓ, t). We can write

the probability of a bundle of trajectories relative to the conjugate set of antitrajectories as

p(δVΓ(Γ, 0))

p(δVΓ(Γ∗, 0))
=

f(Γ, 0)δVΓ(Γ, 0)

f(Γ∗, 0)δVΓ(Γ∗, 0)
. (2.30)

We will assume the distribution is even in the momenta. As such, f(Γ∗, 0) = f(MT StΓ, 0) =

f(StΓ, 0). The volume element at the start of the antitrajectory is equal to the volume

element at the end of the trajectory, δVΓ(StΓ, t) = δVΓ(Γ∗, 0). Using Eq. (2.29) we can now

write
p(δVΓ(Γ, 0))

p(δVΓ(Γ∗, 0))
=

f(Γ, 0)

f(StΓ, 0)
exp

[

−
ˆ t

0
dsΛ(SsΓ)

]

. (2.31)

We can now finally introduce the dissipation function, defined to simplify this equation.

ˆ t

0
dsΩ(SsΓ) ≡ ln

(

f(Γ, 0)

f(StΓ, 0)

)

−
ˆ t

0
dsΛ(SsΓ) ≡ Ωt(Γ) (2.32)

where Ωt(Γ) is the integrated dissipation function and Ω(Γ) is the instantaneous dissipation

function. This allows us to rewrite Eq. (2.31) as

p(δVΓ(Γ, 0))

p(δVΓ(Γ∗, 0))
= exp[Ωt(Γ)]. (2.33)

Since we have not yet specified how the trajectory volumes are defined, we may choose

volumes such that the value of the dissipation function for trajectories inside a volume is
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A. That is, choose δVΓ(Γ, 0; Ωt(Γ) = A ± δA). The dissipation function is odd under time

reversal, so trajectories in the conjugate set will have a value of −A for the dissipation

function. We now have

ln

[

p(Ωt = A ± δA)

p(Ωt = −A ± δA)

]

= A. (2.34)

For sufficiently small δA we can replace the probability with a probability distribution,

ln

[

Pr(Ωt = A)

Pr(Ωt = −A)

]

= A. (2.35)

This is the Evans-Searles Fluctuation Theorem. Implicit in this derivation is the assumption

that if f(Γ, 0) ̸= 0 then f(Γ∗, 0) ̸= 0. This property is called ergodic consistency, and is

necessary to avoid dividing by zero. We also assume causality by comparing the volumes

at time zero rather than at time t, thus breaking the time reversal symmetry. This is the

solution to the paradox of irreversible behavior being derived from time-reversible equations

of motion.

We can see that the fluctuation theorem gives the probability of negative values of the

dissipation function, relative to the probability of positive values.

The dissipation function can be thought of as a measure of the irreversibility of a trajec-

tory. It is a function of the initial distribution of the system, and the phase space positions

along the trajectory. In this way, it is a path integral. The form of the dissipation function is

dependent on the system in question, but it often takes on a simple physical quantity[35, 36].

In many cases it is the dissipative flux.

It is common to refer to the time average of the dissipation function, defined by

Ω̄t ≡
1

t
Ωt. (2.36)

The ES-FT using the time averaged dissipation function is given by

ln

[

Pr(Ω̄t = A)

Pr(Ω̄t = −A)

]

= At. (2.37)

This form is sometimes more convenient, and makes the time dependence explicit.

The integrated dissipation function is extensive in observation time t and system size. As

either is increased, it becomes exponentially more likely that positive values of the dissipation

function will be observed. In the large system or long time limit, only positive values

of the dissipation function will be observed. This is consistent with the Second Law of

Thermodynamics. We have predicted irreversible behaviour from time reversible equations

of motion.

This theorem has been demonstrated extensively computationally[35, 14, 37, 38, 39, 13]

and experimentally[15, 40, 41, 42, 43, 16].
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2.5 The Second Law Inequality

The ES-FT can be used directly to derive an expression equivalent to the Second Law

Inequality[12]. We can write the ensemble average of the dissipation function as

⟨Ωt⟩ =

ˆ ∞

−∞
APr(Ωt = A)dA (2.38)

=

ˆ ∞

0
(APr(Ωt = A) − APr(Ωt = −A))dA (2.39)

=

ˆ ∞

0
APr(Ωt = A)(1 − exp[−A])dA (2.40)

= ⟨Ωt(1 − exp[−Ωt])⟩Ωt>0 ×
ˆ ∞

0
Pr(Ωt = A)dA (2.41)

where ⟨· · · ⟩Ωt>0 denotes an ensemble average over fluctuations in which the dissipation

function is positive. Since the exponential term is always less than unity, and an integral of

probabilities must always be positive, we have

⟨Ωt⟩ ≥ 0 ∀ t > 0. (2.42)

While the instantaneous dissipation function can be negative, the ensemble average of the

integrated dissipation function cannot be negative. This statement is the Second Law In-

equality, and demonstrates clearly the nonreversible behaviour.

2.6 Nonequilibrium Partition Identity

The Nonequilibrium Partition Identity, formerly known as the Kawasaki normalization fac-

tor, is the phase space average of the exponential of the negative dissipation function. It was

first derived for thermostatted systems by Morriss and Evans[31]. Its value can be derived

trivially from the ES-FT[21]. Starting by writing the average as an integral we have

⟨exp [−Ωt]⟩ =

ˆ ∞

−∞
dAPr(Ωt = A) exp [−A] (2.43)

and then applying the ES-FT to the integrand gives us

⟨exp [−Ωt]⟩ =

ˆ ∞

−∞
dAPr(Ωt = −A) (2.44)

=

ˆ ∞

−∞
dAPr(Ωt = A) = 1. (2.45)

This quantity is a good check of computational and experimental accuracy and sampling

size. If the form of the dissipation function is not correct, the Nonequilibrium Partition

Identity will not have a value of unity. If the sample size is not large enough, the average

will not equal unity. The NPI is slow to converge, and displays non-Gaussian statistics. This

makes it appear to converge to a value of less than unity in most instances, which made it

difficult to demonstrate initially[32]. It has now been demonstrated experimentally[21] and
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has had considerable interest recently[44, 45, 46, 47, 48, 49, 50].

The NPI is closely related to summing rules from other fluctuation theorems, such as

the Jarzynski equality[51, 52, 53, 54, 55, 56, 57].

2.6.1 Partial Range NPI

As an attempt to improve the statistics of the NPI a new form of it was derived, where not

all values of the dissipation function are included in the average[44]. From the expression for

the NPI, Eq. (2.43), we can use the ES-FT to replace the integrand for the negative range

of the interval. This reduces the NPI to an integral over positive values of the dissipation

function,
ˆ ∞

0
dA(1 + exp[−A])Pr(Ωt = A) = 1. (2.46)

Here we have used the fluctuation theorem to map the negative half of the probability

distribution to the positive half. The value of this average is still equal to unity. However,

since the fluctuation theorem is effectively being used to convert this average over the positive

values of the dissipation function to an average of all the values, it is not a good test of a

computational or experimental system. It tends to hold even if the distribution of dissipation

function values does not satisfy the FT, and so is not sensitive to errors in the system or

how it is modeled.

2.7 T-mixing

T-mixing, or Transient mixing, is a condition used to characterize nonequilibrium systems[58,

59]. A system is said to be T-mixing if ensemble averages of the transient time correlation

function of the form ⟨B(SsΓ)Ω(Γ)⟩ =
´

dΓB(SsΓ)Ω(Γ)f(Γ, 0) go to zero at long times,

sufficiently quickly that the time integral of this expression converges to a constant finite

value as the integration time goes to infinity.

ˆ ∞

0
ds ⟨B(SsΓ)Ω(Γ)⟩ = L0 (2.47)

where B(Γ) is any arbitrary phase function that is sufficiently smooth and L0 is real and

finite. The system undergoes a transient that begins at time zero. That is, the system is

out of equilibrium initially but begins to move towards it at time 0.

This condition means that correlations between the dissipation function and other phase

functions decay with time. T-mixing is a useful condition which we will utilize occasionally

in this thesis.

2.8 Steady State Fluctuation Theorem

The ES-FT is exact for systems where the initial distribution and dynamics are known. It

can typically be applied to systems starting from some known distribution, and relaxing

towards equilibrium. This is called a transient system. The initial known distribution is
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often an equilibrium distribution for a system under different conditions than the dynamics

being applied. For example, initially the system could be in equilibrium at one temperature,

so the distribution is known, but then dynamics are applied corresponding to a different

temperature, and the system undergoes a transient as it relaxes towards the new equilibrium.

We can also study systems that start in a known distribution, and undergo a transient to-

wards a steady state, rather than an equilibrium. This occurs when we use driven dynamics,

with the heat removed by a thermostat.

Using the transient fluctuation theorem we are not able to study systems where the dis-

tribution is not known initially. However, at long times, when the system is in a steady state,

the initial distribution becomes irrelevant. The distribution in a steady state is unknown

for most systems. We can investigate these systems using the Steady State Fluctuation

Theorem, an asymptotic result[60, 61, 62, 11]. This can be derived intuitively[10, 40, 4] by

writing the integrated dissipation function as a sum of transient and steady state parts,

Ωt =

ˆ τ

0
dsΩ(s) +

ˆ t

τ
dsΩ(s) (2.48)

where the system is in equilibrium at time 0, and the dissipation function is defined from this

point. Here the time τ is an arbitrary cutoff, a time at which the system is considered to be in

the steady state. We can define a steady state dissipation function as Ωss,t =
´ t

τ dsΩ(s) and

and use it to approximate the value of the transient dissipation function, Ωt ≈ Ωss,t +O(τ).

The error is of order τ , a constant with respect to t. Substituting this into the transient

fluctuation theorem, and considering the limit as time, t, goes to infinity we have

lim
t→∞

1

t
ln

[

Pr(Ω̄ss,t = A)

Pr(Ω̄ss,t = −A)

]

= A +
1

t
O(τ) (2.49)

= A (2.50)

where Ω̄ss,t = 1
t Ωss,t.

An alternative derivation is provided in Searles et. al.[34]. In this paper the applicability

of the Steady State Fluctuation Theorem is also discussed, and they show it is applicable

near and far from equilibrium. The existence of a steady state fluctuation relation is a

consequence of T-mixing, ergodic consistency and time reversibility[63, 64].

This form of the fluctuation theorem has been demonstrated computationally[65, 66, 61,

62, 12] and experimentally[40, 42]. It can be easier to work with this form of the fluctu-

ation theorem experimentally because steady state systems are more easily experimentally

accessible than transient ones, since they are constant in time. The result has even been

demonstrated with a single steady state trajectory[41].

2.9 The Dissipation Theorem

The dissipation function is also the argument in another useful result, known as the Dissi-

pation Theorem[17, 18]. We will outline the derivation of this result below.

From solving the differential equation for the streaming version of the phase space con-
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tinuity equation, Eq. (2.26), we have

f(StΓ, t) = exp

[

−
ˆ t

0
dτΛ(SτΓ)

]

f(Γ, 0). (2.51)

Rewriting the definition of the dissipation function, Eq. (2.32),

f(Γ, 0) = f(StΓ, 0) exp

[
ˆ t

0
dτ(Ω(SτΓ) + Λ(SτΓ))

]

. (2.52)

Substituting this into Eq. (2.51) gives

f(StΓ, t) = exp

[
ˆ t

0
dτΩ(SτΓ)

]

f(StΓ, 0)∀Γ. (2.53)

Recognising that StΓ is a dummy variable we can write

f(Γ, t) = exp

[
ˆ t

0
dτΩ(Sτ−tΓ)

]

f(Γ, 0) (2.54)

which after a change of variables becomes

f(Γ, t) = exp

[

−
ˆ −t

0
dsΩ(SsΓ)

]

f(Γ, 0). (2.55)

This result gives the transient distribution of a system in terms of the initial distribution

and the value of the dissipation function.

We can use this result to derive an expression relating nonequilibrium averages to equi-

librium expressions and time correlation functions. Starting with the average of an arbitrary

phase function at time t,

⟨B(t)⟩Fe,f(Γ,0) =

ˆ

dΓB(Γ)f(Γ, t). (2.56)

The subscript on the ensemble average denotes that it is taken in an initial distribution with

any value for Fe, the external field. Substituting the Dissipation Theorem, Eq. (2.55) into

this equation, we get

⟨B(t)⟩Fe,f(Γ,0) =

ˆ

dΓB(Γ) exp

[

−
ˆ −t

0
dτΩ(SτΓ)

]

f(Γ, 0). (2.57)

Taking the derivative of this equation with respect to time, and using Eq. (2.55) gives u

d ⟨B(t)⟩Fe,f(Γ,0)

dt
=

ˆ

dΓB(Γ)Ω(S−tΓ)f(Γ, t). (2.58)
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Let S−tΓ =Γ′,

d ⟨B(t)⟩Fe,f(Γ,0)

dt
=

ˆ

dΓ′B(StΓ′)Ω(Γ′)f(StΓ′, t) exp

[
ˆ t

0
Λ(SsΓ′)ds

]

(2.59)

=

ˆ

dΓ′B(StΓ′)Ω(Γ′)f(Γ′, 0) (2.60)

=
〈

Ω(Γ′)B(StΓ′)
〉

Fe,f(Γ′,0)
. (2.61)

Reintegrating this equation gives us the other useful form of the Dissipation Theorem (re-

labelling Γ′ as Γ),

⟨B(t)⟩Fe,f(Γ,0) = ⟨B(0)⟩f(Γ,0) +

ˆ t

0
ds ⟨Ω(Γ)B(SsΓ)⟩Fe,f(Γ,0) . (2.62)

This is an exact result and is valid arbitrarily far form equilibrium. It has been successfully

demonstrated computationally by Reid et. al.[38]. It is a very general form of the transient

time correlation function, giving the nonlinear response of the system. If the Dissipation

Theorem is linearised the Green-Kubo[67, 68] expression for linear response is recovered.

The presence of the dissipation function in this nonequilibrium result demonstrates how

central it is to nonequilibrium statistical mechanics. While it was originally defined as a

measure of the irreversibility of a system, it is also important in describing how a system

will respond to a nonequilibrium perturbation.

2.10 The Relaxation Theorem

The dissipation function, along with the Second Law Inequality, can be used to prove re-

laxation to equilibrium. We will go through the derivation for the microcanonical case

below[20]. The derivation for the canonical case, of an ergodic Hamiltonian system in con-

tact with a heat bath, is given in [19]. For this derivation we assume that the system is

T-mixing.

We start with the uniform distribution

f(Γ) =
δ(H0(Γ) − E)δ(ps)

´

dΓδ(H0(Γ) − E)δ(ps)
(2.63)

where ps =
∑

i pi. It is understood that the delta function represents an infinitesimally thin

shell of energies, such that the ostensible dimension of phase space is not altered. We will

show that this is the equilibrium distribution for a microcanonical system, which satisfies

Newton’s equations of motion, Eq. (2.3). From the definition of the dissipation function,

Eq. (2.32), we have

exp[Ωt(Γ)] =
f(Γ, 0)

f(StΓ, 0)
(2.64)

since the phase space expansion factor, Λ ≡ (∂/∂Γ) · Γ̇ = 0, for Newton’s equations of

motion. So,

δ(H0(S
tΓ) − E)δ(ps) exp[Ωt(Γ)] = δ(H0(Γ) − E)δ(ps). (2.65)
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We can integrate both sides to get rid of the delta functions, and we are left with

ˆ

dΓδ(H0(S
tΓ) − E)δ(ps) exp[Ωt(Γ)] =

ˆ

dΓδ(H0(Γ) − E)δ(ps), (2.66)

exp[Ωt(Γ)] = 1, (2.67)

Ωt(Γ) = 0 (2.68)

for all phase space positions, Γ, in the uniform distribution. So, there is no dissipation

anywhere in phase space for a uniform distribution. From the ES-FT, this result means that

every set of trajectories and antitrajectories are equally likely to occur. Forward and reverse

motion is completely indistinguishable in the uniform distribution.

From this result we can say that Ω(StΓ) = 0. Using this in the Dissipation Theorem,

Eq. (2.55), so that
´ −t
0 dsΩ(SsΓ) = 0, we have

f(Γ, t) = f(Γ, 0). (2.69)

The uniform distribution is preserved by the dynamics.

We can now consider a deviation from the uniform distribution,

f(Γ, 0) =
δ(H0(Γ) − E)δ(ps) exp[−g(Γ)]

´

dΓδ(H0(Γ) − E)δ(ps) exp[−g(Γ)]
(2.70)

where g is an arbitrary phase function, which is real and even in the momentum. The

deviation is placed as an exponent to ensure that the distribution function is always positive.

We can recalculate the integrated dissipation function and find that

Ωt(Γ) = ln

[

exp[−g(Γ)]

exp[−g(StΓ)]

]

, (2.71)

= g(StΓ) − g(Γ) ≡ ∆g(Γ, t) =

ˆ t

0
dsΩ(SsΓ). (2.72)

So,
ˆ −t

0
dsΩ(SsΓ) = g(S−tΓ) − g(Γ) = ∆g(Γ,−t) (2.73)

and from the Dissipation Theorem, Eq. (2.55),

f(Γ, t) = exp[−∆g(Γ,−t)]f(Γ, 0). (2.74)

Unless g is a constant of the motion the distribution is not preserved. This proves that for

an ergodic system, the uniform distribution is the unique time independent, dissipationless

state. As such we will call it the equilibrium distribution function. This result is known

from ergodic theory, which says that a mixing, ergodic, autonomous Hamiltonian system

will eventually relax towards the microcanonical distribution[69]. The distribution coincides

with the dissipationless distribution found with the relaxation theorem.

The Second Law Inequality states that the average dissipation is greater than or equal

to zero, Eq. (2.42). When the initial distribution is perturbed from the uniform distribution
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this becomes

⟨∆g(Γ, t⟩ ≥ 0. (2.75)

For an initial distribution that differs from the uniform one, there is non-zero dissipation,

so on average this dissipation is positive. This is true for arbitrary g, provided it is an even

function of the momentum.

The Dissipation Theorem allows us to relate averages in the initial distribution to a

correlation function, Eq. (2.62). Selecting the phase function g, this gives us

〈

g(StΓ)
〉

f(Γ,0)
− ⟨g(Γ)⟩f(Γ,0) =

ˆ t

0
ds ⟨Ω(Γ)g(SsΓ)⟩f(Γ,0) . (2.76)

We know Ωt = ∆g(Γ, t), so Ω(StΓ) = ġ(StΓ). Now we have

〈

g(StΓ)
〉

f(Γ,0)
− ⟨g(Γ)⟩f(Γ,0) =

ˆ t

0
ds ⟨ġ(Γ)g(SsΓ)⟩f(Γ,0) . (2.77)

If we assume the correlations decay after a sufficiently long time, tc, since the system is

T-mixing,

〈

g(StΓ)
〉

f(Γ,0)
= ⟨g(Γ)⟩f(Γ,0) +

ˆ tc

0
ds ⟨ġ(Γ)g(SsΓ)⟩f(Γ,0)

+

ˆ t

tc

ds ⟨ġ(Γ)⟩f(Γ,0) ⟨g(SsΓ)⟩f(Γ,0) (2.78)

= ⟨g(Γ)⟩f(Γ,0) +

ˆ tc

0
ds ⟨ġ(Γ)g(SsΓ)⟩f(Γ,0) (2.79)

for t > tc, since ⟨ġ(Γ)⟩f(Γ,0) = 0 because g is even in the momentum, implying that ġ is odd

in the momentum. Now from the Dissipation Theorem, Eq. (2.62), we have

〈

g(StΓ)
〉

f(Γ,0)
=
〈

g(StcΓ)
〉

f(Γ,0)
. (2.80)

Therefore,

lim
t→∞

d

dt

〈

g(StΓ)
〉

f(Γ,0)
= 0. (2.81)

At sufficiently long times there is no dissipation, so the system has reached its unique

equilibrium state. Thus, systems under Newton’s equations of motion will relax to the

uniform distribution, provided temporal correlations decay and the system is ergodic.

Unlike the ergodic theory proof, this approach can also be applied to a canonical system.

In this system, the Boltzmann distribution is the unique dissipationless state, which is

preserved under the dynamics. As in the microcanonical case, if the system satisfies a

number of conditions, such as decay of temporal correlations and ergodicity, Evans et. al.[19]

show that any nonequilibrium distribution relaxes to this equilibrium distribution.

This relaxation towards equilibrium need not be monotonic in the decay of the phase

average dissipation function. Relaxation towards equilibrium has been previously addressed

with the Boltzmann H-theorem[3], however this implies that uniform gasses have a mono-

tonic relaxation. It is only applicable to dilute gases. The Relaxation Theorem allows for
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much more complex behaviour, like what is seen in physically realistic systems[38]. The

initial ensemble response is always towards equilibrium.

For this system any given distribution can be written as a deviation from the Boltzmann

distribution,

f(Γ) =
δ(KEth − KE)e−

H(Γ)
kBT −g(Γ)

´

dΓδ(KEth − KE)e−
H(Γ)
kBT −g(Γ)

(2.82)

where the deviation function is given by g(Γ).

2.10.1 Conformal Relaxation

In the special case where the deviation in Eq. (2.82) decays conformally, the dissipation

function will relax monotonically[19]. This means that the deviation function (for the dis-

tribution as it relaxes with time) can be written as

g(Γ) = c(t)ϱ(Γ) (2.83)

where ϱ(Γ) is constant in time, and c(t) is dependent only on the time, t. So, the deviation

function is a multiple of ϱ(Γ). Exact conformal relaxation is not possible from the initial

time, however the system can approach this behaviour asymptotically.

2.11 Covariant Dissipation Function

The covariant dissipation function can be used to convert a dissipation function defined

from a particular distribution to one defined from a different distribution. This is done

using the time symmetry of trajectories and antitrajectories. Evans et. al.[70] show that the

dissipation function defined from the time evolving phase space distribution has a simple

relationship with the dissipation function defined with respect to the initial distribution.

The dissipation function, defined from a time t1 and integrated from the initial phase space

point St1Γ at time t1 to time t1 + τ is defined by

Ωτ (St1Γ, t1) ≡ ln

(

f(St1Γ, t1)

f(St1+τΓ, t1)

)

−
ˆ t1+τ

t1

dsΛ(SsΓ). (2.84)

This is equivalent to a dissipation function defined from the initial time,

Ωτ (St1Γ, t1) = Ω2t1+τ (Γ, 0). (2.85)

This covariant dissipation function is not local in time, it includes a time t1 before the

interval under consideration, and a time t1 after it. From this relationship an exact steady

state fluctuation theorem can be derived, however it is also not local in time. It is the

standard transient Evans-Searles Fluctuation Theorem, evaluated over the symmetrically

extended time range. This proves that there is no exact time local, steady state form of the

ES-FT.
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2.12 Other Fluctuation Relations

The Evans-Searles fluctuation theorem is one of many such relations applicable to non-

equilibrium statistical mechanics. Here we provide a very brief overview of a selection of these

results, and how they relate to the ES-FT. A key division among these relations is between

those that apply to deterministic systems and those that are applicable to stochastic systems.

The ES-FT was derived for deterministic systems, as was another very general result, the

Crooks fluctuation theorem[71, 72]. The work in this thesis has been done considering purely

a deterministic approach.

Fluctuation relations of a similar kind have been derived for systems which exhibit

stochastic dynamics.

2.12.1 Crooks Fluctuation Theorem

The Crooks fluctuation theorem is like the ES-FT in that it derives irreversible behaviour

from reversible microscopic equations of motion. It’s form is similar to that of the ES-FT

discussed above, except instead of considering probabilities of trajectories characterized by

their dissipation function, it deals with sets of trajectories described by the work[10]. The

Crooks FT is given by
pf (W = C)

pr(W = −C)
= exp[β(C − ∆F )] (2.86)

where W is the work done by a trajectory which starts in state A and ends in state B and

∆F is the difference between these two states. A key difference between this relation and

the ES-FT is that the probability distributions used for the forward and reverse trajectories

are not the same. The probability of forward trajectories, pf (W = C), is the probability of

trajectories which move from state A to state B whose work is equal to C. The probability

of reverse trajectories, pr(W = −C), is the probability of trajectories which move from state

B to state A having a value of the work of −C. In this process both the initial and final

states must be in equilibrium, so the distribution functions are known.

This relationship is similar to the classical thermodynamic result that the work needed to

traverse between two states quasistatically is equal to the free energy difference between those

states. However, the Crooks FT provides much more detail, and gives microscopic quanti-

tative information about non-equilibrium systems. For quasistatic processes, the classical

thermodynamic result is recovered.

Similar to the non-equilibrium partition identity for the ES-FT, the Crooks FT has an

identity for the phase space average of the exponential of the work. This is given by

exp[−β∆F ] = ⟨exp[−βW ]⟩f (2.87)

where the subscript f denotes that this ensemble average is taken over forward trajectories

from state A to B. While the result can be directly derived from the Crooks FT, it had

been previously discovered, and is know as the Jarzynski equality[73, 74]. The relationship

allows the free energy difference between two states to be calculated from non-equilibrium

trajectories between these states. This is a major advance over traditional thermodynamics,
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where this quantity would have to be measured by constructing quasitatic trajectories, which

are always in equilibrium. The Crooks fluctuation theorem, as well as the Jarzynski equality,

have been applied to many experimental systems[51, 75].

2.12.2 Stochastic Fluctuation Theorems

Stochastic dynamics are not time reversible, and incorporate some element of randomness.

They are typically used when the system of interest involves large molecules or colloids in a

solvent whose degrees of freedom aren’t considered explicitly. This requires a separation of

timescale between the system of interest and the heat bath. One example is the Langevin

equation, which was initially constructed to describe Brownian motion. The derivation of

the Evans-Searles FT and many of the theorems derived from it, discussed earlier in this

chapter, rely on time reversibility. However, both the ES-FT and the Crooks FT have

been shown to be applicable to systems with stochastic dynamics[76, 66, 37, 40]. There

are many fluctuation theorems of the same form which have been derived for stochastic

systems[77]. Some work specific to driven Langevin dynamics was done by Sekimoto[78] to

show that classical thermodynamic quantities such as heat and work could be calculated

for individual trajectories. In fact, the derivation of many of these fluctuation theorems has

been unified[47], and its form is very general[79]. These results form part of a field known

as stochastic thermodynamics[80].

Stochastic thermodynamics could be particularly useful for describing the non-

equilibrium behaviour of systems which are too complex to model easily with deterministic

equations of motion, such as biological systems and molecular machines[81]. Experimen-

tally these theorems have been applied to colloidal systems, such as with a moving optical

trap[15, 41], a stationary trap with an applied field[82, 83] and under a non-harmonic po-

tential created by a laser and a fixed repulsive surface[84]. Stochastic fluctuation theorems

also have application to other quite varied systems, such as electric circuits[42, 85] and grav-

itational wave detectors[86], which can be effectively described with Langevin dynamics.

One key advantage of stochastic dynamics over deterministic dynamics is that it is com-

paratively straightforward to apply their fluctuation theorems to non-equilibrium steady

states. The stochastic approach has some disadvantages, such as making different assump-

tions to the ES-FT. For example, when working with the Langevin equation, it is necessary

to assume that the noise is not affected by the driving[47].
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Chapter 3

Computer Simulation Techniques

The work in this thesis was largely undertaken using computer simulations. This chapter will

provide an overview of the techniques employed. Molecular dynamics was used to model

the behavior of each system, and the properties of interest were calculated in ensembles

of trajectories. The Weeks-Chandler-Andersen potential[87] was used to model particle

interactions in a simple manner. Artificial thermostats were used in the simulations to

allow a wide range of systems to be modeled[27]. We use modifications to the equations of

motion to allow us to generate desired initial conditions, such as modifying the equations

to include perturbations to the potential. Simple driven shear flow systems were modeled

using the SLLOD[27] equations of motion. All simulations are run in two dimensions to save

on computational expense.

All of the code was written in C++. The simulations were run on local desktop comput-

ers, as well as at the NCI supercomputer facility. The code used in this thesis was based off

existing molecular dynamics code, which was modified extensively for each different system

studied.

The methodology used to analyse the results differs for each system being studied. In

most cases the results are in terms of probabilities, calculated from frequency histograms

generated with the simulations. In the first part of this thesis, studying the relaxation

of a density gradient, the results include the position dependent density of the system. To

analyse these results we used a least squares fit of the density data to monitor the relaxation,

as well as a discrete Fourier decomposition of this data in more complex systems.

3.1 Molecular Dynamics

Molecular dynamics is a tool for propagating Newton’s equations of motion in a computa-

tional system[88, 89]. An example of the equations of motion used in a computer simulation

are given in Section 2.2, Eq. (2.3). The motion of the particles in the system depends on

the position and momentum of each particle. The force on each particle can be calculated

from the particles positions, allowing us to integrate the equations of motion and simulate

trajectories.

25



-1

 0

 1

 2

 3

 4

 5

 0  1  2  3  4  5

po
te

nt
ia

l, 
u(

r)/
ε 

interparticle distance, r/σ

Lennard-Jones Potential

Figure 3.1: The Lennard-Jones potential, plotted without units as r/σ against u(r)/ε.

3.1.1 Force Calculations

The force on each particle, Fi, depends on the positions of every particle in the system and

is given in terms of the pair forces, the derivative of the potential between two particles. The

interactions between two particles can be modeled using the Lennard-Jones potential[90, 91],

given by

u(r) = 4ε

[

(σ

r

)12
−
(σ

r

)6
]

(3.1)

where r is the interparticle distance, ε is the depth of the well and σ is the distance at which

the potential passes through zero. This function is plotted in Figure 3.1. It is a reasonable

approximation of the potential between two argon atoms.

The effect of non-additive interactions are not included[92, 93]. This is a very commonly

used potential[94], even though it has been shown that the selected exponents 6 and 12 do

not fit the experimental data best[95, 96]. Alternative potentials that include three body

interactions and fit experimental data better have been developed[97], however adding three

body interactions increases the complexity and computer time required.

To simplify our simulations we use a truncated form of the Lennard-Jones potential,

the Weeks-Chandler-Andersen(WCA) potential[87, 27]. The potential is truncated at the

minimum, so it is cutoff at the distance rc = 21/6σ, and shifted up by ε so that the potential is

continuous, and zero at the cutoff. By truncating the potential at the minimum its derivative

is also continuous. This potential includes only the repulsive short range interactions, leading

to faster computer simulations by ignoring long range attractive interactions. Only two body

interactions are considered.
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3.1.2 Integration Method

The equations of motion can be approximately solved numerically using iterative methods.

This work uses the fourth order Runge-Kutta method[98], which has the advantage of being

self starting[27].

The algorithm takes the phase space position of the system at some given point, and

uses the calculated force on each of the particles to progress the equations of motion forward

by one time step. The accuracy of the calculation is dependent on the length of time step

used. It uses a trial step at the midpoint of the time step interval. The smaller the time

step, the more reversible the numerical integration of the equations of motion will be.

A thermostat, which was discussed in Section 2.2, can be included. The equations of

motion can then be solved using the same method as above, including the thermostat term.

The thermostat used in this thesis is designed to keep the kinetic energy constant. How-

ever, errors are introduced in the numerical simulations, due to both rounding and discreti-

sation. Respectively, the size of these errors are dependent on word-length and time step

used in the simulation. Because of these errors, it is possible for the value of the kinetic

energy to drift, since the thermostat is keeping it constant, rather than at a specific value.

To rectify this problem we can add a proportional correction factor to the value of α[99, 100].

α =

∑

i Fi · pi
∑

i pi · pi
+

0.02

2Ndt

((

∑

i

pi · pi

)

− (2N − 3)kBT

)

(3.2)

where dt is the time step length. If the value of the kinetic energy calculated from the

simulation is equal to the value determined with the input temperature, this correction

factor is zero and has no effect. If the kinetic energy has drifted, the correction factor

will change α so that it moves the kinetic energy towards the value specified by the input

temperature. In our two dimensional system the kinetic energy of the system is given by

(2N − 3)kBT from the Equipartition Theorem, since both components of the momenta are

fixed, as well as the total kinetic energy.

The other imposed condition on the system is that the total momentum is equal to

zero. This should be preserved by the equations of motion, however it may also drift due to

rounding error.

An applied field that is not applied symmetrically in both directions can result in non-

zero total momentum. This can be fixed by readjusting the momentum depending on the

forces applied to the system, effectively moving the reference frame of the simulation.

To keep the momentum zero we will rezero each component of the total momentum every

time step. This is done by calculating the total value of each component of the momenta,

dividing it by the total number of particles in the system, and subtracting this amount from

that component of each particle’s momentum.

3.1.3 Periodic Boundary Conditions

In order to approximately simulate the behaviour of a bulk fluid, using a reasonable amount

of computer time, we conduct our simulation with periodic boundary conditions. This allows
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Figure 3.2: Illustration of periodic boundary conditions. The nearest neighbours of the red
particle in the central unit cell are connected to it with dotted lines.

us to simulate a small number of particles without having to be concerned with the effects

of boundaries.

We use orthogonal periodic boundary conditions[27], where one cubic cell which contains

all the simulated particles of the system is surrounded by an infinite array of identical cells.

This initial cell is called the primitive cell. Now when considering interactions between

particles, the force on a given particle is calculated from the interaction with the image

of each other particle that is closest to it. The interactions may be within the primitive

cell, or between neighbouring cells. Each particle interacts with all other particles that are

within the cutoff distance of the potential function. If a particle leaves the primitive cell, it

is replaced by an image of itself entering from the adjacent cell.

These periodic boundary conditions can just as easily be applied to two dimensional

systems, where a square is surrounded by an infinite array of identical squares. This situation

is illustrated in Figure 3.2.

3.1.4 Initial Conditions

To run molecular dynamics simulations, the initial position and momentum of each particle

need to be known. We initially assign these values so that the particles are not overlapping,
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and the kinetic energy of the system matches the input temperature for the simulation.

3.1.4.1 Position

It is convenient to set up the particles in a regular lattice initially[101]. Generally in a liquid

system, the choice of lattice is arbitrary, since it will relax to equilibrium independently of

the initial positions. However, if the liquid system is near its freezing point, it is important

to select initial positions that are not metastable if an equilibrium system is desired. In this

thesis the particle positions were initiated in a FCC lattice.

3.1.4.2 Momenta

The simulations in this thesis will be in an isokinetic ensemble. In this case, the initial

momenta need to be selected such that the system has the desired kinetic temperature. This

is done by assigning each component of the velocity of each particle randomly, according

to a Gaussian distribution. The kinetic energy of the system with these randomly assigned

momenta is calculated, and then each component is rescaled to give the correct value of the

kinetic temperature.

Since the assigned initial positions are fixed, it is important that the momenta are as-

signed randomly, as this will allow for simulations in the same macrostate but which generate

different trajectories.

3.1.4.3 Equilibrium

All of the simulations in this thesis begin in an equilibrium state. This state is achieved by

starting with the initial positions and momenta given above, and integrating the equations

of motion for a sufficiently long time. To generate an ensemble of trajectories starting in the

equilibrium distribution, each trajectory must start from a different initial position. These

positions are generated by running the simulation in equilibrium for a time long enough that

the phase space position is uncorrelated from the last sampled point. This is repeated in

series for the number of ensemble members required.

When the ensemble is generated through multiple simulations run on different computers

(i.e. cores of a super computer) a different seed is used for the random number generator

when assigning the initial momenta. This ensures the sets of ensemble members calculated

on each computer are unique.

3.1.5 SLLOD

Planer couette flow, described in Section 2.3.1, is a convenient and interesting nonequilibrium

system to study computationally. The equations of motion given in Eq. (2.13) and (2.14)

can be used in the simulation, however different periodic boundary conditions are needed.

3.1.5.1 Lees-Edwards Periodic Boundary Conditions

Since the system is shearing, the periodic boundary conditions need to move with the

system[102]. This can be thought of as the unit cells sliding past one another, illustrated in
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Figure 3.3: Lees-Edwards periodic boundary conditions, shown in a sliding brick represen-
tation. The nearest neighbors of the red particle in the central unit cell are connected to it
with dashed lines. The lattice cell offset is dependent on the amount of time the simulation
has been running for, t and the length of the unit cell, bL.

Figure 3.3.

The rate at which the unit cells move relative to one another is determined by the strain

rate, γ̇. This sliding brick system is equivalent to shearing (deforming) the unit cell, then

remapping the boundaries of the unit cell to include a convenient set of particles. This

remapping is done once every cycle, equivalent to the time it takes for one unit cell to move

into the original position of the neighbouring cell in the sliding brick method. While the

remapping is not theoretically necessary, it is required in practice due to the size limit of

numbers that can be stored in the computer simulation.

The system being simulated changes slightly as the sliding bricks move relative to one

another. That is, the system is not that same when the adjacent unit cells are offset as

when they are aligned. Each particle’s own periodic image is in a different relative location

in each of these cases. The shifting of the boundary conditions puts a strain on the system

which results in a non-zero stress[103]. This causes the simulation to be non-autonomous.

That is, it depends explicitly on time, as the periodic boundary conditions depend explicitly

on the time since the system began shearing.

This effect is only noticeable for very small system sizes. Once the system is big enough

that a particle’s own periodic image has no effect on it, the simulation behaves as if it is

autonomous.

One way to negate some of the effects of the non-autonomous simulation is to consider the
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lattice cell offset as a phase space variable, and average over an extended phase space[104].

That is, each trajectory can be initiated with a random value for the initial offset. This

method has been used to calculate the viscosity of a system[105], which converges to the

bulk viscosity more quickly than simulations using other methods[106].

3.1.6 Code Functionality Verification

As a check to see if the molecular dynamics simulation is working as expected we can

calculate the change in energy of the system in two different ways. First, we can calculate

the value of the energy directly, and compute its change over some length of the simulation.

That is, we calculate the sum of the kinetic energy and the potential energy from the

configuration and interparticle potential function. If an external field is applied to the

system this also needs to be included in the potential energy calculation.

We can also calculate the change in energy of the system as the energy removed by the

thermostat. The change in energy with time is given by

Ḣ0 =

(

∂

∂t

N
∑

i=1

pi · pi

2m

)

+ Φ̇ (3.3)

=
N
∑

i=1

ṗi · pi

m
− Fi · q̇i

=
N
∑

i=1

(Fi − αpi) · pi

m
− Fi ·

pi

m

= −α
N
∑

i=1

pi · pi

m

= −α(2N − 3)kBT.

The change in H0 can be calculated during the same Runge-Kutta integration process used

to integrate the equations of motion. We can compare this value to that calculated from

the change in H0 directly to ensure that the simulation is conserving energy. Many coding

problems will cause the simulation to not conserve energy, and so this check will detect

them.

3.1.7 Reduced units

In order to make our simulations as general as possible, we run them in reduced units[101].

That is, all parameters are expressed in terms of more fundamental units, allowing equivalent

simulations to be mapped to a range of physical systems. All quantities in the thesis will be

written in units of distance, given by σ from the Lennard-Jones potential, energy, given by ε

from the Lennard-Jones potential, and the particle mass, m. The dimensionless parameters

are given below.
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x∗ = x/σ distance

Φ∗ = Φ/ε energy

T ∗ = kBT/ε temperature

t∗ = t
√

ε/mσ2 time

v∗ = v
√

m/ε velocity

p∗ = p
√

1/εm = v∗ momentum

F∗ = Fσ/ε force

The * will be omitted in this thesis when referring to these quantities in the simulations.

3.2 Monte Carlo

As an alternative to generating particular distributions by allowing the simulation to come

to equilibrium with a molecular dynamics simulation, we can select the configurations using

the Metropolis Monte Carlo process[107]. A Monte Carlo algorithm starts with a given

configuration, modifies it, and then accepts the modified result according to some rule.

Appropriately selected, this acceptance criteria allows us to generate configurations from an

equilibrium distribution[89].

For the Metropolis method the acceptance criteria is based on the energy of the con-

figuration, as well as the equation describing the desired phase space distribution. If the

modified configuration, l, has a lower energy than the configuration before it, i, the change

is accepted. For a Boltzmann distribution, if the energy is increased, then the probability

that the change will be accepted is equal to

p = exp[β(Φ(l) − Φ(i))] (3.4)

where Φ(l) is the potential energy of the modified state and Φ(i) is the potential energy

of the previous state. This is calculated using the interparticle potential. This acceptance

criteria is designed to preserve the equilibrium distribution. The configurations generated

will converge to the Boltzmann distribution.

To accept the moves according to the given probability in Eq. (3.4) we select a random

number from a uniform distribution spanning [0, 1]. If the random number is less than p

than the move will be accepted. Otherwise the move is not accepted, and the previous

position is used again. It is important to make sure that the random number generator used

correctly samples the uniform distribution[101].

The modified configuration can be generated by moving one or more of the particle

positions. The larger the change, the lower the probability that the move will be accepted,

and so the lower the acceptance ratio. The acceptance ratio is the ratio between accepted

moves and total moves tried. Larger accepted moves will sample the distribution more

quickly. The most efficient acceptance ratio will differ with each program, but a ratio of

20% has been found to be quite efficient for a Lennard-Jones system[108]. In this thesis the

moves will consist of moving one particle for each trial, selected at random. This ensures

that the sampling of phase space will be ergodic[101].
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Any starting configuration may be used for the Monte Carlo simulation. We will start

with an FCC lattice. To properly sample the Boltzmann distribution the configuration

must relax first. That is, the Monte Carlo process must be carried out for some time until

the configurations are correctly sampling the Boltzmann distribution. To get independent

configurations, a sufficient number of trials must be conducted between each configuration

used.

3.3 Data Analysis

3.3.1 Frequency Histograms

As the ES-FT is written in terms of relative probabilities of the dissipation function, we

need a method for calculating these in simulations. This is typically done by approximating

the relative probabilities with relative frequencies.

The value of the dissipation function can be calculated for any trajectory. We can

simulate an ensemble of trajectories, and calculate the value of the dissipation function for

each one. For each value calculated we assign it to a histogram bin. The histogram is

built up as we conduct the simulation. When enough trajectories are included, the relative

frequencies become a good approximation to the relative probabilities of dissipation function

values.

3.3.2 Fourier Transform

In this thesis we will be analysing the density distribution throughout a system. The density

of the system is sampled over M different x-positions across the system. That is, the

system is cut into M slices, and the average density is calculated in each slice. The density

distribution of a function can be analysed using a discrete Fourier transform (DFT)[109].

This takes a series of data points and fits them to a sum of trigonometric functions. The

number of functions is equal to the number of data points in the series. This allows the

function to be fit to the data points exactly.

Our data points, Dm(xm), are fit to the function

Dm(xm) =
1

M

M−1
∑

j=0

Aje
i2πjm/M (3.5)

which is written in terms of complex sinusoids,

ei2πjm/M = cos(2πjm/M) + i sin(2πjm/M) (3.6)

where M is the total number of data points. The coefficient of each of these sinusoids, Aj ,

is a complex number. Since all of our data points are real numbers, the real part of Aj will

give the coefficient of the cosine functions and the imaginary part will give the coefficient of

the sine functions. Each value of j corresponds to the coefficient for a sinusoid with different
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frequency. To calculate the value of each coefficient from the data points we use the equation

Aj =
M−1
∑

m=0

Dm(xm)e−i2πjm/M . (3.7)

The values for j span from 0 to M − 1. While there will be one complex coefficient, Aj ,

calculated for each data point, all the data points are real numbers, so we have AM−j = A∗
j .

Here, A∗
j denotes the complex conjugate of Aj . We can see that AM/2 must be real valued,

as its complex conjugate is equal to itself. We also know that A0 is real, as sin(0) = 0. The

rest of the DFT is completely specified by M/2 − 1 complex coefficients.
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Chapter 4

Dissipation in Monotonic and

Non-monotonic Relaxation to

Equilibrium

Relaxation to equilibrium is an essential phenomena in physics because the equilibrium state

has many useful properties which make it easy to study. For instance, thermodynamics is

only applicable in equilibrium. However, relaxation to equilibrium is an inherently nonequi-

librium process, making it more difficult to study. The dissipation function has been shown

to be a very useful tool in studying nonequilibrium systems[34, 59], and can be used in the

Evans-Searles Fluctuation Theorem[11, 63], the Relaxation Theorem[19], the Second Law

Inequality[12] and the Dissipation Theorem[17, 18] to monitor relaxation to equilibrium.

This has been done computationally using a model of an optically trapped particle, in a

system which relaxes non-monotonically towards equilibrium[38]. We will extend this area

by computationally studying the relaxation process in a simpler field free system, and look

at monotonic as well as non-monotonic relaxation scenarios. We will study the relaxation

process using the dissipation function, as well as other more intuitive measures.

A particularly interesting feature of the Relaxation Theorem and Second Law Inequality

is that they allow for non-monotonic relaxation. However, systems often relax monotonically.

We will endeavor to construct a system which clearly displays non-monotonic relaxation.

4.1 Initial Conditions

A simple system for studying the relaxation process is a system of particles that begins

with a non-uniform density distribution. We will model the relaxation of this system with

molecular dynamics using a 2-dimensional fluid of WCA[87] particles with periodic boundary

conditions[27]. The equations of motion are solved with a time step length of 0.001. The sys-

tem begins in equilibrium with an applied perturbation to the potential. This non-uniform

perturbation in the potential results in a density gradient across the system. This initial

distribution can be generated using either Monte Carlo or molecular dynamics. Because the
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system is in equilibrium initially the distribution function is known, which is a condition for

calculating the form of the dissipation function. A number of different perturbations were

used to study different relaxation processes.

4.2 Discrete Potential Step Perturbation

The first potential perturbation considered to generate the density gradient was a potential

step.

H = H0 +
N
∑

i=1

Up,i (4.1)

Up,i = h0(1 − Θ(xi − bL/2)) (4.2)

where H is the energy of the system, H0 is the internal energy, Up,i is the potential pertur-

bation on each particle, Θ is the Heaviside step function and bL is the periodic box length.

The potential of all the particles on the left side of the box is perturbed by the step height,

h0. Since the derivative of the Heaviside step function is not finite, the force due to it would

be an impulse in the equations of motion, and so it is easier to generate the initial distri-

bution using the Monte Carlo method, described in Section 3.2. The added energy penalty

for particles on the left side of the box will result in less moves being accepted that increase

the density on the left side, resulting in a non-uniform density gradient. The system is in

an equilibrium distribution.

4.2.1 Simulation Details

The simulation includes 256 particles with a density of 0.6 in a periodic box. The box length

is determined from the density and number of particles. The temperature is set to 1.0 and

the strength of the applied potential perturbation is set to h0 = 0.5. An equilibrium state

was reached by running the simulation for 107 trials from the initial FCC positions. From

this point 108 trials (moves) were conducted to sample the distribution and calculate the

density profile. The phase space position is sampled every 5,000th move.

4.2.2 Density Profile

The density of this equilibrium system will not be uniform because of this potential pertur-

bation applied to the particles. We can study the density profile of the system by dividing

our periodic box into slices and calculating an average density for each slice. The periodic

box is split into 100 slices. The density as a function of position in the system is plotted in

Figure 4.1.

We can see that the potential perturbation has caused a lower average density on the

left hand side of the periodic box. It has also introduced significant fluctuations in density

throughout the length of the system.

As an aside, we can predict the density profile of the system with the potential perturba-

tion from equilibrium correlations of the density in a system with no potential perturbation.
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computer simulations of an unperturbed system, the RHS of Eq. (4.8). The x position is
given as a percentage of the box length.
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This kind of approach has been used in the past to predict properties of liquids from their

density distribution under applied potential perturbations[110].

Let us divide up our periodic box into M slices, and let ni be the number of particles in

slice i. Now,

⟨ni⟩λ =

ˆ

dΓf(Γ, λ)ni(Γ) (4.3)

where λ determines whether the potential perturbation is included in the equations of mo-

tion. For λ = 0 no perturbation is included, for λ = 1 the perturbation is the Heaviside

step function with an amplitude of h0 described in Eq. (4.2). Our equilibrium system is

described by the Boltzmann distribution so,

⟨ni⟩λ =

´

dΓ exp[−βH(Γ, λ)]ni(Γ)
´

dΓ exp[−βH(Γ, λ)]
. (4.4)

The energy of the system, H , can be split up into the energy from particles and particle

interactions, H0, and the energy due to the potential perturbation, h(Γ),

H(Γ, λ) = H0(Γ) + λh(Γ). (4.5)

We can write the energy due to the perturbation as h(Γ) = h0
∑N

i=1 1−Θ(xi−bL/2) = h0nL,

where nL is the number of particles on the left side of the box. Taking the derivative of

Eq. (4.4) with respect to λ we have

∂⟨ni⟩λ
∂λ

=

´

dΓ − βh(Γ) exp[−βH(Γ, λ)]ni(Γ)
´

dΓ exp[−βH(Γ, λ)]

−
(
´

dΓ − βh(Γ) exp[−βH(Γ, λ)]) × (
´

dΓni(Γ) exp[−βH(Γ, λ)])

(
´

dΓ exp[−βH(Γ, λ)])2

= −β(⟨hni⟩ − ⟨ni⟩⟨h⟩)

= −βh0(⟨nLni⟩ − ⟨ni⟩⟨nL⟩). (4.6)

To first order we have

⟨ni⟩1 − ⟨ni⟩0 =
∂⟨ni⟩λ

∂λ

∣

∣

∣

∣

λ=0

(1 − 0)

= −βh0(⟨nLni⟩0 − ⟨ni⟩0⟨nL⟩0). (4.7)

The subscripts of 0 here indicate that these averages are taken in the system with no per-

turbing potential. This allows us to write the average number of particles at each position

in the perturbed system, in terms of correlation functions in the unperturbed system,

⟨ni⟩1 = ⟨ni⟩0 − βh0(⟨nLni⟩0 − ⟨ni⟩0⟨nL⟩0). (4.8)

The RHS of this equation was calculated using computer simulations and is included in the

Figure 4.1, as a function of x position in the system. We can see that the density calculated

from the unperturbed equilibrium system is within the error bars of the directly calculated

density in the perturbed system.
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4.2.3 Derivation of Dissipation Function

The dissipation function is helpful in studying the relaxation process. It is needed in the

Relaxation Theorem[19] and the Dissipation Theorem[17, 18], both of which are applicable

to systems relaxing to equilibrium. The form of the dissipation function for our system can

be derived from its definition[10]

Ωt ≡ ln

(

f(Γ, 0)

f(StΓ, 0)

)

−
ˆ t

0
Λ(SsΓ)ds, (4.9)

where Ωt is the integrated dissipation function, f(Γ, 0) is the phase space density of phase

space position Γ at time 0, St is the natural time evolution operator and Λ is the phase

space expansion factor. No perturbation is applied to the dynamics during the trajectory

so the phase space expansion factor is determined by the thermostatted dynamics of the

system. It is not affected by the initial perturbation, and so is given by its usual expression

from the equations of motion, Eq. (2.4),

Λ = βḢ0

where β = 1/kBT , kB is Boltzmann’s constant and Ḣ0 is the change in energy of the system,

not including the energy from the potential step perturbation applied to generate the initial

distribution. The initial canonical distribution is given by

f(Γ, 0) =
exp[−βH(Γ)]

´

dΓ exp[−βH(Γ)]
(4.10)

where H(Γ) = H0(Γ) + h(Γ). Now the dissipation function is given by

Ωt = ln

(

exp [−β(H0(Γ) + h(Γ))]

exp [−β(H0(StΓ) + h(StΓ))]

)

−
ˆ t

0
βḢ0(Γ(s))ds (4.11)

= β(h(StΓ) − h(Γ)) (4.12)

= βh0(nL(StΓ) − nL(Γ)). (4.13)

The integrated dissipation function is not continuous, since its value is determined by the

number of particles on the left side of the system at the final and initial times, and there are

a finite number of particles in the system. This means that its derivative, the instantaneous

dissipation function will involve delta functions whenever a particle crosses from the right to

the left, or vise versa. The Dissipation Theorem and Relaxation Theorem will be difficult to

apply to a system with such a complicated form of the instantaneous dissipation function,

making this seemingly simple system not an ideal candidate to study relaxation. A system

with a continuous and smooth perturbing potential would be a more suitable choice.
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4.3 Sine Potential Perturbation - Colour Field

For simplicity, the first continuous perturbation used was a sine curve as a function of x

position.

Up,i =
a

2
sin

(

2πxi

bL

)

(4.14)

where a determines the strength of the applied perturbation. Using a smooth continuous

perturbation function is necessary for the resulting form of the dissipation function to be

easy to work with. We studied a gentle relaxation process by using a colour field, applying

a different perturbation to different particles in the system. Since the potential is smooth

the initial distribution can be generated with molecular dynamics. The equations of motion

used to set up the initial distribution are

q̇i(t) =
pi

m
, (4.15)

ṗi(t) =Fi(t) − αpyij + ciFp,i − µ, (4.16)

α =
Fy · py

py · py
, (4.17)

µ =

(

N
∑

i=0

ciFp,i

)

/N, (4.18)

Fp,i = −
∂Up,i

∂x
i = −

aπ

bL
cos

(

2πxi

bL

)

i, (4.19)

where ci = (−1)i is the switch to control the colour of each particle. By using the colour

field to set up the initial distribution, both colours of particles will have a density gradient

across the system, but the total density distribution will be relatively uniform, allowing for

gentle relaxation.

The term µ is added to keep the total momenta of the system zero. The applied colour

field may exert more force to the system as a whole to one direction or another, depending

on the position of the particles. This term effectively moves the reference frame of the

simulation with the system.

Once the initial distribution has been set up, the system is allowed to undergo field free

relaxation, with an isokinetic thermostat. The equations of motion are the same as for the

setup, but ci is zero. The thermostat is only applied in the y direction so that it does not

interfere with the relaxation of the density gradient in the x direction in an unphysical way.

4.3.1 Density Profile

We can visualize the initial distribution of the system by creating a histogram of the x

positions of the particles from a number of repetitions of the simulation. An ensemble of 106

trajectories was used. From this we can calculate the average particle density in each part of

the system, shown in Figure 4.2. The strength of the perturbing potential was determined

by a = 2.5.
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Figure 4.2: Average density in the system as a function of x position. A sine potential pertur-
bation was applied to the equations of motion of the particles to generate this distribution,
seen in Eq. (4.19) with a = 2.5.

4.3.2 Derivation of Dissipation Function

From the equations of motion for the relaxing system and the initial distribution we can

derive the form of the dissipation function in the same way as was done for the discrete

potential step system. From Eq. (4.12) we have

Ωt = β(h(StΓ) − h(Γ)). (4.20)

For this system the potential due to the perturbation is

h(StΓ) =
N
∑

i=1

ci
a

2
sin

(

2πxi(t)

bL

)

(4.21)

where xi(t) is the x coordinate of particle i at time t. The dissipation function is now given

by

Ωt = β
a

2

(

N
∑

i=1

ci sin

(

2πxi(t)

bL

)

−
N
∑

i=1

ci sin

(

2πxi(0)

bL

)

)

. (4.22)

The streaming derivative of this gives us the instantaneous dissipation function

Ω(StΓ) =
βaπ

mbL

(

N
∑

i=1

cipxi(t) cos

[

2πxi(t)

bL

]

)

(4.23)

where pxi is the x component of the momenta of particle i and m is the particle mass. We

can monitor the relaxation process with the dissipation function, and expect the integrated

dissipation function to obey the Second Law Inequality.
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4.3.3 Relaxation

From our initial distribution generated with the perturbed equations of motion we can set

ci to zero for all values of i to study field free relaxation. We can monitor the density

distribution as the system relaxes. An ensemble of 106 trajectories was simulated for 5×104

time steps over the relaxation process. A sample of density profiles of the system at different

points in time are shown in Figure 4.3. We can see that the total density relaxes to a uniform

distribution quickly. The distributions of each colour appear to relax to sine curves, whose

amplitude decreases with time.

To quantify our study of the relaxation process we can preform a least squares fit[111]

of these density distribution graphs to a sine curve of fundamental wavelength. That is, we

fit the difference between the colour density and the average colour density, as a function of

position, to the equation

D = A sin

(

2πx

bL

)

(4.24)

to give the amplitude of the sine wave, A, which is plotted against time in Figure 4.4. We

used the density of the green particles, where ci = −1. The average colour density is given

by ρ/2. As expected, the density approaches a uniform distribution as the relaxation time

approaches infinity.

We can also monitor the relaxation of the system by calculating the value of the instanta-

neous dissipation function throughout the relaxation process, seen in Figure 4.5. Initially the

average value of the dissipation function is zero because the distribution is even in the mo-

menta, since it is an equilibrium distribution under the potential perturbation. The integral

of the instantaneous dissipation function approaches its equilibrium value monotonically. We

know from the Relaxation Theorem that if the deviation function in the distribution relaxes

conformally then the average dissipation function relaxes monotonically[19], as discussed in

Section 2.10.1. The density distribution graphs in Figure 4.3 appear to relax conformally,

so this monotonic behaviour of the dissipation function is expected. We can also observe

from Figure 4.5 that since the average of the instantaneous dissipation function is always

positive, the average integrated dissipation function is always greater than zero, satisfying

the Second Law Inequality.

The Dissipation Theorem, described in Section 2.9, relates a phase function’s average

value to its transient correlation function with the instantaneous dissipation function. We

can demonstrate the Dissipation Theorem in this system, using the instantaneous dissipation

function as the argument. From Eq. (2.62) the Dissipation Theorem becomes

⟨Ω(StΓ)⟩ =

ˆ t

0
⟨Ω(Γ)Ω(SsΓ)⟩ds. (4.25)

The RHS of Eq. (4.25) is included in Figure (4.5) and a close agreement is seen between the

average of the dissipation function and the integral of the correlation function, demonstrating

the Dissipation Theorem in this relaxing system.
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Figure 4.3: A sample of density profiles as the system relaxes. The density profile of both
colours is shown (in red and green), as well as the total density profile in black.
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Figure 4.6: Distribution generated by perturbing the equations of motion with a potential
equal to the sum of two sine curves, Eq. (4.26). The total density distribution is shown in
black, and the two colours shown in red and green.

4.4 More Complex Potential Perturbation - Colour Field

To look at more complex relaxation a sum of two sine functions was used as the perturbation

on the potential to generate the initial distribution.

Up,i =
a

2

(

sin

(

2πxi

bL

)

+ sin

(

4πxi

bL

))

. (4.26)

The equations of motion used were the same as in Eqs. (4.15)-(4.18) but with the force due

to the perturbation given by

Fp,i = −
aπ

bL

(

cos

(

2πxi

bL

)

+ 2 cos

(

4πxi

bL

))

i. (4.27)

4.4.1 Density Profile

The initial distribution can be seen in Figure 4.6. The strength of the perturbation is given

by a = 2.5. We can see that the distribution of each colour is more complex, and the total

density distribution is far from uniform.

4.4.2 Dissipation Function

The integrated dissipation function is the same as in Eq. (4.20) with the new form of Fp,i(x).

This leads to

Ωt = β
a

2

(

N
∑

i=1

ci

(

sin

(

2πxi(t)

bL

)

+ sin

(

4πxi(t)

bL

))

)

−β
a

2

(

N
∑

i=1

ci

(

sin

(

2πxi(0)

bL

)

+ sin

(

4πxi(0)

bL

))

)

. (4.28)
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The instantaneous dissipation function is given by the streaming derivative,

Ω(StΓ) =
βaπ

mbL

(

N
∑

i=1

cipxi(t)

(

cos

[

2πxi(t)

bL

]

+ 2 cos

[

4πxi(t)

bL

])

)

. (4.29)

4.4.3 Relaxation

We let the system relax from the initial distribution in the same way as above. An ensemble

of 106 trajectories was simulated for 5×104 time steps. Examples of the density distributions

throughout the relaxation process are shown in Figure 4.7, and the dissipation function

is plotted in Figure 4.8. We can see that the total density relaxes quickly to a uniform

distribution, while the density of each colour remains fairly complex, before apparently

relaxing to a sine curve of fundamental period. This sine curve then decays conformally. At

long time both colours relax to a uniform distribution. Again the instantaneous dissipation

function starts at zero, before increasing rapidly and then decaying monotonically.

In order to quantitatively monitor the relaxation we do a least squares fit of the green

particles density distribution to the sum of two sine waves. The density distribution function

at each time is fit to an equation of the form

D = A1 sin

(

2πx

bL

)

+ A2 sin

(

4πx

bL

)

. (4.30)

The parameters, A1 and A2 are plotted against time in Figure 4.9. We can see that

the shorter period component decays faster. We fit each series in Figure 4.9 to an ex-

ponential function, which gave the equations of best fit A1 = 0.225 exp[−0.142t] and

A2 = 0.259 exp[−0.574t]. The amplitude of the second harmonic decays four times as fast

as the amplitude of the fundamental. This is what is expected from the solution to the

diffusion equations[112].

4.5 Approximate Square Wave Potential Perturbation -

Colour Field

To study a system similar to what would be generated by applying a colour potential step

perturbation to the equations of motion we can perturb the potentials of each colour with

an approximate square wave. This was done using a finite number of terms of the Fourier

decomposition of a square wave,

Up,i =
4a

π

11
∑

n=1,3,5...

(

1

n
sin

(

2πnxi

bL

))

(4.31)

which is displayed graphically in Figure 4.10.

The force due to the perturbation is given by

Fp,i = −
8a

bL

11
∑

n=1,3,5...

(

cos

(

2πnxi

bL

))

i. (4.32)
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Figure 4.7: Relaxation of the system from a distribution generated by a perturbation that
was the sum of two sine curves. Density distributions of each colour, as well as the total
density are shown for a selection of times along the relaxation process.
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equilibrium with the equations of motion perturbed by the potential in Eq. (4.26).
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Figure 4.9: A least squares fit of the density distribution of the green particles to the sum of
two sine curves, Eq. (4.30). Both amplitudes are plotted, where A1 is the amplitude of the
sine curve of fundamental wavelength, and A2 is the amplitude of the shorter wavelength
component.
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Figure 4.10: Approximate square wave used to perturb the equations of motion to generate
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Figure 4.11: Initial density profile distribution of the system generated from the approximate
square wave. The total density is in black, and each colour is shown in red and green.

4.5.1 Density Profile

A graph of the initial density distribution generated using the approximate square wave

potential perturbation is shown in Figure 4.11. The two colours are almost completely

separated on each side of the box, with a non-uniform density on each side. The simulation

was carried out with the amplitude of the perturbation determined by a = 2.5 in Eq. (4.32)

and an ensemble of 104 trajectories was used.
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Figure 4.12: The ensemble average of the instantaneous dissipation function calculated as
the system relaxes from a non-uniform initial density generated using an approximate square
wave applied to each colour.

4.5.2 Dissipation Function

The dissipation function is derived in the same way as described above, leading to an in-

stantaneous dissipation function of

Ω(StΓ) =
8βa

mbL

(

N
∑

i=1

cipxi(t)

(

11
∑

n=1,3,5...

cos

(

2πnx

bL

)

))

. (4.33)

4.5.3 Relaxation

The path integral of the dissipation function again approaches its equilibrium value mono-

tonically, seen in Figure 4.12.

A sample of density distribution profiles from the relaxation process are shown in Fig-

ure 4.13. We can see that the total density relaxes to a uniform distribution before the

distribution of individual colours appears to relax to sine curves of fundamental wavelength.

As the density distributions are more complicated, the easiest way to monitor them

quantitatively is to preform a discrete Fourier transform on each distribution, and then plot

each component with time. The discrete Fourier transform fits the density distribution to

an equation of the form

D =
M
∑

i=1

Ai sin

(

2iπx

bL

)

+ Bi cos

(

2iπx

bL

)

. (4.34)

An overview of discrete Fourier transforms and how these components, Ai and Bi, are calcu-

lated is presented in Section 3.3.2. A selection of the components are shown in Figure 4.14.

We can see that the higher frequencies generally decay faster than the lower ones.
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Figure 4.13: A sample of density distributions along the relaxation process.

51



-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0  1  2  3  4  5

Am
pl

itu
de

Time

Discrete Fourier Transform of Density Distributions

A1 - Sin 
A3 - Sin 
A5 - Sin 

B6 - Cos 
B12 - Cos 

Figure 4.14: A selection of the most significant components from the discrete Fourier trans-
form of the density distribution as the system relaxes.

4.6 Approximate Square Wave Potential Perturbation

Applied to All Particles

To study a more dramatic relaxation process we used the same approximate square wave

perturbation, but applied it to every particle. That is, we use the form of Fp given in

Eq. (4.32) and Figure 4.10 but let ci = 1 for all particles in the equations of motion,

Eqs. (4.15)-(4.18).

4.6.1 Density Profile

This non-colour field perturbation results in a large density gradient across the system, and

a very non-uniform initial distribution, seen in Figure 4.15. The size of the perturbation is

determined by a = 2.5.

4.6.2 Dissipation Function

The dissipation function has the same form given by Eq. (4.33), but with ci = 1 for all

particles.

4.6.3 Non-Monotonic Relaxation

The relaxation of the density distribution in time is fairly complex, seen in Figure 4.16, and

we will again use a DFT to analyze it. A few key components can be seen in Figure 4.17.

We can see that the relaxation process is complex, and that each component does not simply

decay exponentially, and so can not be described by the diffusion equations. A particularly

interesting component, the first sine component, A1 is plotted separately in Figure 4.18.

We can see that it displays non-monotonic relaxation, as the amplitude approaches zero, it
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Figure 4.15: Initial density distribution generated by perturbing the equations of motion
by an approximate square wave potential applied to every particle. The total density as a
function of position is shown in black, and the red line shows the average density within the
system.

“bounces”, passing through zero a number of times before finally relaxing to it. This means

that at times, the density is moving away from a uniform distribution.

Figure 4.19 displays the calculated instantaneous dissipation function of the system,

which also shows complex relaxation. The points where the instantaneous dissipation func-

tion is zero correspond to the stationary points in the first component of the density dis-

tribution; there is instantaneously approximately no change in the distribution. While the

instantaneous dissipation function is not always positive in this system, the integrated dis-

sipation function, shown in Figure 4.20, is always greater than zero. This is consistent with

the Second Law Inequality. We can also observe from this plot that the dissipation function

approaches its equilibrium value non-monotonically.

We can use the dissipation function to demonstrate the Dissipation Theorem in this

system, and again we see a good agreement between the average and the autocorrelation

function, also plotted in Figure 4.19.

4.7 Conclusion

Field free relaxation was studied in systems relaxing from a non-uniform initial density,

monitored using both density distributions and the dissipation function. When this density

gradient was in coloured particles the density distribution decayed to a sine curve of fun-

damental wavelength, which then decayed conformally towards a uniform distribution. The

dissipation function decayed towards its equilibrium value monotonically, consistent with the

predictions of the Relaxation Theorem for a conformally relaxing system. When the system

was initiated with a more dramatic density gradient non-conformal relaxation was seen in

both the dissipation function and the Fourier components of the density distribution. At

times, the system appeared to be moving away from a uniform density distribution. In both

cases, the Second Law Inequality was satisfied, and the Dissipation Theorem demonstrated.

53



 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 0  20  40  60  80  100

D
en

si
ty

Density Profile During Relaxation

t=0.15

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  20  40  60  80  100

D
en

si
ty t=0.45

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  20  40  60  80  100

D
en

si
ty

Position in box (percentage)

t=0.75

Figure 4.16: Density distributions of the system as it relaxes. Each plot is shown on the
same scale for comparison.
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Figure 4.17: A selection of components of the discrete Fourier transform of the density
distribution throughout the relaxation process.
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Chapter 5

Mechanism for Asymmetric Bias

in the NPI

The Nonequilibrium Partition Identity (NPI) is an exact relationship in nonequilibrium

statistical mechanics involving the dissipation function. It is a result of the Evans-Searles

Fluctuation Theorem and its derivation is included above in Section 2.6. The NPI can be

useful as a diagnostic tool in computer simulations and experiments. This is because its value

is known for all systems, and is sensitive to errors in the measurement of the dissipation

function[21]. It can also be used to determine if phase space sampling in an experiment has

been sufficient. The NPI takes the form of an ensemble average of an exponential function,

⟨e−Ω̄tt⟩ = 1 (5.1)

where Ω̄t is the time average of the dissipation function over a trajectory of length t. This

average is slow to converge when the average of the exponent is not similar to the natural

log of the average of the exponential function[44]. The NPI often appears to converge to a

value lower than one[27].

Just as the NPI is derived from the ES-FT, the well known Jarzynski Equality(JE)[73,

74] can be derived from the Crooks Fluctuation Theorem[71, 72], another exact result in

nonequilibrium statistical mechanics. The JE is mathematically the same as the NPI if it is

written in terms of the purely irreversible work. Collectively the JE and NPI are known as

summing rules or integral fluctuation theorems. There has been immense interest in these

types of summing rules over the past 10-15 years[51, 52, 53, 54, 55, 56, 57, 44, 45, 46, 47, 48,

49, 50, 31, 32], however there has been no detailed analysis of how the rare events contribute

to the ensemble average. We will conduct our analysis on the NPI, however it should be

directly applicable to the JE.

In this chapter we will consider alternative descriptions of the ensemble average in ques-

tion in the NPI, and analyse the rare events involved in calculating this average.
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5.1 Alternative Derivation

The NPI exhibits vastly different behaviour when its value is derived assuming full ensemble

averaging, when compared to approximating the distribution with a Dirac-delta function.

Using the ES-FT we can prove that the NPI has a value of unity, where we assume infinite

sampling of the distribution. However, we also expect that the mean of Ω̄t will be constant

in t, while the standard deviation will scale with 1/
√

t for long enough durations. As such,

at long times we can approximate the distribution of Ω̄t with a Dirac-delta distribution.

Using this approximation the value of the NPI will be

〈

exp[−Ω̄tt]
〉

=

ˆ ∞

−∞
dAPr(Ω̄t = A) exp[−At], (5.2)

ˆ ∞

−∞
dAδ

(

A −
〈

Ω̄t

〉)

exp[−At] = exp
[

−
〈

Ω̄t

〉

t
]

. (5.3)

This means that given enough time the measured NPI will be related to a transport coeffi-

cient. In the case of colour conductivity this will be the self-diffusion coefficient,

D =
N − 1

N

1

βρ
lim

t→∞
lim

Fex→0

⟨J(t)⟩
Fex

, (5.4)

where

lim
t→∞

〈

Ω̄t

〉

= β ⟨J(t)⟩ V Fex (5.5)

as the system approaches a steady state. So the value of the NPI is given by

〈

exp[−Ω̄tt]
〉

= exp

[

−DF 2
exβ2V ρ

N

N − 1
t

]

(5.6)

as the trajectory length goes to infinity and the field strength goes to zero. This is clearly

not equal to the value of unity required by the ES-FT.

The reason for this discrepancy is because it is inappropriate to apply the fluctuation

theorem to a distribution that can be described by a delta function. The definition of the

dissipation function requires that the system is ergodically consistent, that is if f(Γ, 0) ̸= 0

then f(MT StΓ, 0) = f(StΓ, 0) ̸= 0. This means that if there is a finite likelihood of observing

a dissipation function value of Ω̄t = A, then there must also be a non-zero probability of

observing the value Ω̄t = −A. While our system is ergodic in principle, since the value of the

NPI can be calculated at the value given by the ES-FT with enough sampling, it may not be

ergodic in practice. We may not be able to observe any antitrajectories for each trajectory

observed given the time available to conduct simulations. In this chapter we will study

systems where the value of the NPI is given by the Dirac-delta function approximation,

systems where its value is given by the ES-FT, and the intermediate region where neither

regime describes the system. Simulations that fall into the first category are studied in detail

below is section 5.8.
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5.2 Difficulty of Calculation

The NPI can be calculated for any system, experimental or computational, where the path

integral of the dissipation function can be measured for an ensemble of trajectories. Prac-

tically, the ensemble average can be calculated by summing e−Ω̄tt for each trajectory and

dividing the sum by the total number of ensemble members. We can also calculate this

average by writing it as an integral,

⟨e−Ω̄tt⟩ =

ˆ ∞

−∞
Pr(Ω̄t = A)e−AtdA (5.7)

where Pr(Ω̄t = A) is the probability distribution of the time averaged dissipation function.

This form has the advantage that large values for the sum of e−Ω̄tt don’t need to be stored,

as well as making difficulties in the calculation process easier to identify.

The probability distribution of the dissipation function can be approximated by a Gaus-

sian distribution in low field systems. The Gaussian distribution that satisfies the fluctuation

theorem has a variance twice the value of the mean[113]. This distribution will satisfy the

NPI relationship by construction. To understand the calculation of the ensemble average

using the integral in Eq. (2.43) we can use a Gaussian distribution, shown in Figure 5.1 as

the solid line, as a substitute for the probability distribution of the dissipation function.

To calculate the integrand in Eq. (2.43) we multiply the probability distribution in Fig-

ure 5.1 by the exponential of the negative dissipation function value multiplied by time. This

is plotted in Figure 5.2 as the solid line. We can see that distribution is peaked mostly on

negative values of A, even though these values of the dissipation function are very unlikely.

This is due to the large value of the exponential function at very negative values of A. The

NPI is calculated by integrating the function shown in Figure 5.2.

The Gaussian distribution has no noise associated with it, resulting in a smooth distribu-

tion when it is multiplied by e−At. However, in a real system we approximate the probability

distribution using a frequency histogram, which we would expect to be noisy, particularly

in the wings of the distribution.

We will calculate a histogram of dissipation function values using simulation results from

a colour conductivity system where a colour field is applied to all particles. We will use a

field strength of 0.71 and a trajectory length of 19,100 time steps. The other parameters are

specified in Section 5.5. The value of the dissipation function was calculated for each of the

108 trials of the simulation completed. These were used to construct a frequency histogram,

shown in Figure 5.1.

To calculate the integrand in Eq. (2.43) we multiply the dissipation function histogram

by the exponential, e−At. This is plotted in Figure 5.2 for each value of A. This graph is

much noisier than the original probability distribution, especially around the values of A

corresponding to the negative edge of the probability distribution. This will cause the value

of the NPI to be noisy when it is calculated by integrating the function in Figure 5.2. We

can also note that for sufficiently unlikely values of the dissipation function, no trajectories

are observed in the simulation, and the integrand drops abruptly to zero. This occurs at

A = −0.718 (one trajectory was measured at A = −0.799 but it is not shown on the scale
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Figure 5.1: Histogram of the dissipation function calculated from a colour conductivity
simulation. 108 trajectories with a duration of 19.1 were included in the histogram. The
frequency of each value of A is divided by this total number of trajectories to give an
approximate probability distribution, Pr(Ω̄t = A). A Gaussian distribution is also shown,
with a mean fit to the simulation data.

used in Figure 5.2 due to restricted space). We can see from comparison with the Gaussian

distribution example that a significant part of the integrand should be to the left of this

point, none of which is included in the simulation results when the function is integrated

over the full range of the distribution. It is for this reason that the NPI can appear to

converge to a value less that unity. For a given number of trajectories in the simulation, the

same portion of the distribution will typically be missed due to insufficient sampling.

To further demonstrate the difficulty in calculating the value of the NPI we will look at

the results obtained from nonequilibrium molecular dynamics simulations, as we increase

the length of the trajectory while keeping the amount of sampling fixed. This is presented

in Figure 5.3, for a colour conductivity system with a field strength of Fex = 2. The other

parameters are specified in Section 5.5. The error bars included are two standard errors,

estimated from 10 separate block averages. We can see that initially the value of the NPI

is unity, and the error bars appear reasonable up to a trajectory duration of t = 1.5. At

longer times the errors estimated from the block averages do not come close to including the

expected value for the NPI of unity.

The displayed data is serially correlated because the same ensemble of trajectories was

used initially for all values of the duration t. As the trajectory duration increases the rare

events in the simulation become rarer, and also each make a larger contribution to the full

ensemble average. A portion of the rare events have become so rare that they are completely

unobservable, resulting in the NPI being consistently underestimated. As the trajectory

length increases, the proportion of rare events which are unobservable increases, which

decreases the value of the calculated average. This underestimation of the NPI is repeatable
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between duplicates of the simulation, resulting in small error bars from the standard error

analysis.

An interesting feature of Figure 5.3 is the correlation of error bar size with fluctuations

in the height of each data point. When a data point happens to have a larger value for the

average relative to the neighboring data points, the error bars are consistently larger for

that point. This is due to an increased sampling of rare events, which raise both the height

of the data point and the calculated standard error.

The NPI is a consequence of the ES-FT, so understanding the statistical fluctuations in

the ES-FT is a good place to begin before tackling the more difficult case of the NPI. While

the ES-FT is exact, it is written in terms of probabilities of certain events characterised by

the dissipation function. To demonstrate the theorem computationally or experimentally it

is necessary to approximate the relative probabilities using an estimator in which there are

uncertainties. Determining the magnitude of the uncertainty is inherently difficult because

the distribution of errors around the mean is not Gaussian.

The ES-FT is usually demonstrated in the literature[16, 43, 11, 4, 36, 42, 14, 114, 37,

66, 12, 40, 115, 15, 28] using its log form,

A =
1

t
ln

[

Pr(Ω̄t = A)

Pr(Ω̄t = −A)

]

(5.8)

and plotting 1
t ln[Pr(Ω̄t = A)/Pr(Ω̄t = −A)] vs A with an expected slope of unity. Fluc-

tuation relations involving functions other than the dissipation function have also been

examined using this method[75, 84, 116]. We will establish how well we can expect to be

able to demonstrate the ES-FT given a finite amount of sampling, and build upon these

results in order to analyse the NPI.

5.3 Using the Fluctuation Theorem to Estimate Uncer-

tainties in the Frequency Histogram

Demonstrating the ES-FT involves comparing the number of trajectories which have a dissi-

pation function value of Ω̄t = A±δA to the number with the less likely value, Ω̄t = −A±δA.

Practically, we compare these values by comparing the relative heights of the corresponding

bins of a frequency histogram. Often, the counts for the bins in the negative wing of the

distribution will be dominated by noise. The error in the ratio of frequencies will be most

significant when the negative bin has far fewer counts than the positive bin. To model the

error in the bin height we need to know the expected height, which can be determined by

mapping the positive side of the distribution to the negative side using the ES-FT itself. This

will result in a distribution that is as noisy as the positive side of the original distribution.

The expected value for each histogram bin is now given by

λ(A) =

⎧

⎨

⎩

exp[At]nm(−A) if A < 0

nm(A) if A ≥ 0
(5.9)
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where nm(A) is the measured frequency of the histogram bin for Ω̄t = A ± δA. With the

expected value of each bin height, we will be able to determine the expected distribution for

each bin height.

In systems that have an approximately Gaussian distribution of dissipation function

values, we can estimate the true height of the bin by replacing the distribution with a

Gaussian distribution for the purpose of calculating the uncertainty. The mean of this

distribution is set to the mean of the data. The variance of the Gaussian distribution that

satisfies the ES-FT is twice the mean[113]. This would result in less noise in each expected

bin height. For the rest of the analysis we will consider the more general case where a

Gaussian approximation cannot be used.

5.4 Binomial Distribution

The binomial distribution gives the probability distribution for a biased coin toss experi-

ment. That is, for a process with a fixed probability of success, r, performed W times, the

probability of obtaining exactly k successes is given by the binomial distribution,

pk(r, W ) =

(

W

k

)

rk(1 − r)W−k. (5.10)

The height of each histogram bin in our system, n(A), can be described by a binomial

distribution where W is the total number of trajectories that have been simulated and

r = λ(A)/W is the probability of a trajectory falling within a particular histogram bin.

This distribution function is related to the frequency histogram used to demonstrate

the ES-FT in the following way. There are a total of W trajectories computed, with the

expectation value λ(A) for the number of these trajectories found in the histogram bin A±
δA. So the binomial distribution gives the probability of observing a value of k trajectories

falling in the histogram bin given by A± δA. Note that the binomial distribution Eq. (5.10)

is skewed and asymmetric, particularly for distributions with lower values for the average,

λ. It is plotted for a selection of values of λ in Figure 5.4. The value used for the total

number of trajectories is W = 9 × 107, the value we will use in the simulations below.

To generate error bars from this distribution, which gives the probability of a given

number of events, we need to use the cumulative probability distribution,

CDFk(r, W ) =

⌊k⌋
∑

i=0

(

W

k

)

rk(1 − r)W−k (5.11)

where k is the highest number of occurrences that the probability mass function is summed

to and ⌊k⌋ is the largest integer less than k. This distribution is plotted for a range of values

of the mean in Figure 5.5.

To get error bars of certain confidence we can calculate the value of k required to give

specific values of the CDF. For example, to include at least 95% of the distribution, the

error bars would span from the value of k = k0.025, the largest integer value satisfying

CDFk0.025 (λ) ≤ 0.025 to the value of k = k0.975, the smallest integer value satisfying
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would cover at least 47.5% of the distribution on each side of the median are shown.

CDFk0.975 (λ) ≥ 0.975. For the histogram bin associated with the variable A (e.g. recall

Eq. (5.9)), we can label the positive and negative error bars as ∆pos(A) = k0.975(A) − λ(A)

and ∆neg(A) = λ(A) − k0.025(A) respectively. In general we have

∆pos(A) = k0.5+p/2(A) − λ(A), (5.12a)

∆neg(A) = λ(A) − k0.5−p/2(A) (5.12b)

where p is the proportion of the histogram to be included in the error bars, and the value

of k is determined using the CDF. These error bars may be asymmetric due the skew of the

distribution. An example of how these error bars are calculated can be seen in Figure 5.6.

These error bars give the range of values that could be expected to be measured for each

histogram bin. The average number of occurrences in the histogram bin will be different for

each bin, and so will have a different corresponding binomial distribution. This means that

the error bars will vary with each bin, in both size and symmetry. The binomial distribution

is more skewed for smaller values of λ, resulting in relatively less symmetric error bars for less

populated bins. We will only consider histogram bins where the error bars do not overlap

with zero, to avoid dividing by zero. In these cases, the calculated error bars are roughly

symmetric.

5.5 Numerical System

To illustrate the method we will use data from a model computational system. To generate

a nonequilibrium system we will apply a colour field to all the particles in the system[4].

65



 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

gr
ad

ie
nt

, g

A

FT gradient for each pair of bins

Figure 5.7: Gradient calculated from each pair of bins, given by Eq. (5.13). The histogram
of dissipation function values was taken from the example computational system.

The equations of motion used are given in Section 2.3.2, Eq. (2.18) and (2.19). An isokinetic

thermostat[27] is used, where the thermostat multiplier is given by Eq. (2.20). The system

begins in an equilibrium canonical distribution. This was generated with an equilibrium

molecular dynamics simulation, with starting points for the transient simulations taken

every 2,000 time steps. This ensures the simulations are statistically independent. We use

a two dimensional system of 8 particles (N=8) with a number density of ρ = Nσ2/V = 0.6.

The trajectory duration is labelled t, with a time step length of 0.001. W = 9 × 107 trials

of the simulation were completed. The histogram bin width was initially 0.003, and only

bins which contained data are included. We will initially use a field strength of Fex =0.17

and a trajectory duration of 12. The form of the dissipation function for this system is well

known[34], and given by Ω(t) = βFex
∑N

i=1 ciẋi(t).

5.6 Propagating Uncertainties to Demonstrate the Fluc-

tuation Theorem

To demonstrate the fluctuation theorem we will take the approach of calculating the gradient

of the LHS against the RHS, for each pair of histogram bins. That is,

g =
1

At
ln

[

nm(A)

nm(−A)

]

. (5.13)

For the fluctuation theorem to be satisfied, we would expect g to have a value of unity for

each histogram bin. Using our example computational system g was calculated for each

value of A, shown in Figure 5.7.

To calculate the total slope of the LHS of the fluctuation theorem against the RHS, we
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Figure 5.8: Inverse of the smoothed variance of each point, calculated from the binomial
distribution describing each histogram bin’s height in Eq. (5.16).

can construct a weighted average of the gradient calculated for each pair of histogram bins,

G =

∑h
i gi/

〈

∆g2
i

〉

∑h
i 1/ ⟨∆g2

i ⟩
. (5.14)

Each point is weighted by the inverse variance, calculated from the variance of the binomial

distribution for each histogram bin using the standard error propagation method,

〈

∆g2
i

〉

=

〈

∂g

∂n(A)

〉2
〈

∆n(A)2
〉

+

〈

∂g

∂n(−A)

〉2
〈

∆n(−A)2
〉

=

〈

∆n(A)2
〉

(At ⟨n(A)⟩)2
+

〈

∆n(−A)2
〉

(At ⟨n(−A)⟩)2
(5.15)

to linear order. The variance of the binomial distribution is given by
〈

∆n(A)2
〉

= λ(A)(1 −
λ(A)/W ), giving us

〈

∆g2
i

〉

=
1

(At)2

[

1

λ(A)
+

1

λ(−A)
−

2

W

]

. (5.16)

To weight each point we will smooth the calculated variance, so that each variance is replaced

by the average of itself with 2 data points on each side. The inverse of this calculated variance

is shown for each pair of histogram bins in Figure 5.8. Points close to the origin receive a low

weight because small fluctuations in the height of these histogram bins have a large effect

on the slope. Points in the wings of the distribution have a low weight because of the large

variance in the histogram bin height relative to their average height.

The weighted average of the slope is plotted in Figure 5.9 as we increase the number of

histogram bins included in the average. The average quickly converges to its expected value

of unity as more data is added. While the calculated slopes for histogram bins in the wings
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Figure 5.9: Slope of the ES-FT calculated as a weighted average of slopes calculated from
each pair of histogram bins, given by Eq. (5.14). The average was calculated using all pairs
of histogram bins up to the value of A given on the x-axis.

of the distribution are significantly noisier, this is not reflected in the final average because

these points have low weights.

Propagating the variance from the binomial distribution into the variance for g does

not take into account the asymmetry in the initial distribution for each bin height, or any

asymmetry due to the small size of the histogram bin height relative to the expected range in

this height in the bins near the wings of the distribution. To account for this, we can calculate

the largest and smallest possible values for g, given that the height of each histogram bin is

determined by a specific proportion of the binomial distribution in Eq. (5.12).

∆g+(A) =
1

At
ln

[

n(A) + ∆pos(A)

n(−A) − ∆neg(−A)

]

− 1, (5.17a)

∆g−(A) = 1 −
1

At
ln

[

n(A) − ∆neg(A)

n(−A) + ∆pos(−A)

]

. (5.17b)

In doing this we have not assumed that the errors are small enough to be accurately approx-

imated as linear, as was done in Eq. (5.15). This range of possible values for g is plotted

in Figure 5.10 for each pair of histogram bins in our example system. We can see that for

large values of A the range is asymmetric. That is, the slope can land further from the

expected value of unity on the positive side than on the negative side. We can propagate

these asymmetric ranges to the weighted average of the slope, G, using the standard error

propagating method, but applying it separately to the positive and negative range.

∆G+ =

√

√

√

√

h
∑

i

(

∂G

∂gi

)2

∆2
gi+

=

√

∑h
i ∆2

gi+/ ⟨∆g2
i ⟩

2

∑h
i 1/ ⟨∆g2

i ⟩
, (5.18a)
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∆G− =

√

√

√

√

h
∑

i

(

∂G

∂gi

)2

∆2
gi−

=

√

∑h
i ∆2

gi−/ ⟨∆g2
i ⟩

2

∑h
i 1/ ⟨∆g2

i ⟩
. (5.18b)

This range of values is included in Figure 5.10. The range decreases as the accuracy of G

increases with increasing A. While the limits for g were asymmetric for the wings of the

distribution, this asymmetry is not observable in the limits for G because of the low weight

of these points. The errors given by Eq. (5.18) again are assumed linear, but here the errors

are (except for small values of A) very small, so this approximation will be accurate.

5.7 Propagating Uncertainties to the NPI

As a first step towards extending this analysis to the NPI we will calculate the value of the

NPI for each pair of histogram bins. We can show using the ES-FT that this is expected to

have the same value as the full NPI,

〈

e−Ω̄tt
〉

A
=

exp[−At]n(A) + exp[At]n(−A)

n(A) + n(−A)

=
exp[−At]Pr(A)W + exp[At]Pr(−A)W

n(A) + n(−A)

=
W (Pr(−A) + Pr(A))

n(A) + n(−A)
= 1. (5.19)

We calculated this in the same system as before, but with a field strength of Fex = 0.29,

trajectory duration of t = 18, W = 9 × 107 trials and histogram bin width of 0.004. This

is plotted in Figure 5.11 as crosses. The error bars are constructed by splitting the data
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into 9 sets and calculating the standard error. This error analysis method consists simply of

considering independent repetitions of the simulation, and is equivalent to the same method

used when calculating the full NPI. For histogram bins close to the centre (small values

of A), the NPI has a value within the error bars of unity, as expected. As the value of A

increases the data becomes significantly noisier, though the error bars still overlap with the

value of unity. However, in the wings of the distribution the NPI for a number of histogram

bins drops to a value close to zero, with very small error bars. This is very clear for values

of A > 0.75. In these cases, the histogram bin corresponding to −A did not record any

trajectories, and we can see that the standard error analysis method has failed. It is when

these histogram bins make a significant contribution to the total NPI that its value appears

to be significantly different to unity, as seen in Figure 5.3.

The measured pair NPI is given as

NPIp(A) =
exp[−At]nm(A) + exp[At]nm(−A)

nm(A) + nm(−A)
. (5.20)

We can now calculate the expected range for each pair NPI by linearising Eq. (5.20) and

propagating the variance from the initial binomial distributions for each histogram bin. This

is the standard error propagation method. Let ∆NPIp(A) = NPIp(A) − ⟨NPIp(A)⟩. Now
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to linear order

∆NPIp(A) = ∆n(A)

〈

∂NPIp(A)

∂n(A)

〉

+ ∆n(−A)

〈

∂NPIp(A)

∂n(−A)

〉

(5.21)

= ∆n(A)

〈

exp[−At]

n(A) + n(−A)
−

exp[−At]n(A)

(n(A) + n(−A))2
−

exp[At]n(−A)

(n(A) + n(−A))2

〉

+ ∆n(−A)

〈

exp[At]

n(A) + n(−A)
−

exp[At]n(−A)

(n(A) + n(−A))2
−

exp[−At]n(A)

(n(A) + n(−A))2

〉

.

Using the ES-FT,

∆NPIp(A) = ∆n(A)

〈

exp[−At]

n(A) + n(−A)
−

n(−A)

(n(A) + n(−A))2
−

n(A)

(n(A) + n(−A))2

〉

+∆n(−A)

〈

exp[At]

n(A) + n(−A)
−

n(A)

(n(A) + n(−A))2
−

n(−A)

(n(A) + n(−A))2

〉

= ∆n(A)(exp[−At] − 1)

〈

1

n(A) + n(−A)

〉

+∆n(−A)(exp[At] − 1)

〈

1

n(A) + n(−A)

〉

(5.22)

which to linear order is

∆NPIp(A) = ∆n(A)

[

exp[−At] − 1

λ(A) + λ(−A)

]

+ ∆n(−A)

[

exp[At] − 1

λ(A) + λ(−A)

]

. (5.23)

Since each histogram bin is statistically independent,

〈

∆NPIp(A)2
〉

=
〈

∆n(A)2
〉

(

(exp[−At] − 1)2

(λ(A) + λ(−A))2

)

+
〈

∆n(−A)2
〉

(

(exp[At] − 1)2

(λ(A) + λ(−A))2

)

. (5.24)

This variance is used to calculate a range of two standard deviations around the expected

value of the pair NPI, and is included in Figure 5.11, labelled as the linearisation limits.

These limits show the increase in uncertainty as the value of A increases, and continues to

increase after the error calculated using simple block averaging becomes unreliable.

We can also calculate the upper and lower limit for the pair NPI by using the extreme

values for each histogram bin, with the limits that include 95% of the binomial distribution

calculated in Eq. (5.12).These limits are included in Figure 5.11 as solid red lines. These

limits correctly predict the increase in the noise of the pair NPI with A. The minimum

possible value of the NPI of zero is also reflected by these limits. However, in the wings of

the distribution the upper limit drops close to zero. This may be observed in the figure for

all values of A that are larger than the value of A = 0.85, where the discontinuous drop of

the line occurs. This sudden drop towards zero is because while the mean of the distribution

describing the −A histogram bin, λ(−A), is still greater than zero, our 95% interval of the

binomial distribution only includes the value zero. So, the upper and lower limits for the

expected value of this histogram bin are both zero when the value A > 0.85. Obviously if

we chose the interval to be larger than 95% this discontinuous drop would occur at a larger
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value of A. This mirrors what happens with the actual simulation data, where the pair NPI

goes to zero when A is larger than some critical value. If we sampled more data the value of

A where this occurs would also be larger. The exponential nature of the ES-FT will mean

that this increase in the critical value of A is extremely gradual with increased sampling.

We now turn our attention to what happens upon computing the full NPI rather than

the pair NPI. To do this we have to sum up the pair NPI for each value of A as per,

〈

exp[−Ω̄tt]
〉

=

ˆ ∞

0
dA

n(A) + n(−A)

N

〈

exp[−Ω̄tt]
〉

A
. (5.25)

The pair NPI is not accurately estimated when the value of |A| is too large and the value of

n(−A) becomes too small to get an accurate estimate. When the pair NPI with values of

|A| that are large enough to suffer from this problem make a significant contribution to the

full NPI, it will not be accurately estimated. This happens when the trajectory duration

the NPI is estimated at becomes large enough. If we increase the strength of the driving

field, Fex, this transition will occur at a shorter trajectory duration. At these sufficiently

long durations the full NPI is consistently underestimated, as seen in Figure 5.3.

We can measure the significance of each histogram bin in calculating the value of the

NPI by calculating the value of the integrand for that bin from writing the average as an

integral
〈

exp[−Ω̄tt]
〉

=

ˆ ∞

−∞
dAPm(A) (5.26)

where Pm(A) = exp[−At]Pr(Ω̄t = A). The integrand is actually the mirror of the probability

distribution, as follows from the ES-FT, Eq. (2.37), i.e. Pm(A) = Pr(−A), hence the

subscript m for mirror.

This is plotted in Figure 5.12 for each histogram bin. We have also included a measure of

the error in the calculated probability of each bin, the standard deviation of the bin height

divided by the average height. This represents the relative error for each value of A. This

data is from the same system as Figure 5.3, the colour conductivity system with a field

strength of 2.0. The value of the probability distribution approximated from each histogram

bin is given by Pr(Ω̄t = A) = λ(A)/W where λ(A) is determined using the ES-FT in

Eq. (5.9). The standard deviation is the square root of the variance for each histogram bin

height, given by the binomial distribution, σ(A) =
√

λ(A)(1 − λ(A)/W ). Two trajectory

durations are included, t = 1, where the calculated value for the NPI is as close to unity as

expected, and t = 4 where the calculated value is far from unity. We can see that the most

significant histogram bins in the first case have a much lower relative error than the most

significant histogram bins at the latter time. This explains in detail why the NPI can be

calculated in a numerical system for short times, but fails at later times.

5.8 Dirac-Delta Description of the NPI

We have seen that negative values of the dissipation function become less likely as the

trajectory length increases. We expect at long time we can approximate the distribution of

Ω̄t with a Dirac-delta distribution, with the value of the NPI given by Eq (5.6). From this
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Figure 5.13: Long duration comparison between NPI derived diffusion coefficient, Eq. (5.27),
and the more directly obtained diffusion coefficient, Eq. (5.28).

expression we will calculate the value of the self-diffusion coefficient as

D ≈
N − 1

N

− ln
〈

e−Ω̄tt
〉

β2ρtV F 2
ex

. (5.27)

We can also calculate it directly as

D =
N − 1

N

1

βρ
lim

t→∞
lim

Fex→0

⟨J(t)⟩
Fex

(5.28)

where

J(t) =
1

V

N
∑

i=1

ciẋi (5.29)

and

⟨J(t)⟩ ≈
1

t

〈
ˆ t

0
J(s)ds

〉

(5.30)

which will become increasingly accurate as the duration is increased. The time dependent

diffusion coefficient for each case is plotted in Figure 5.13. These simulations use the same

system as Figure 5.3 with a field strength of 2.0, but using an ensemble of 105 trajectories.

We can see that as the trajectory duration increases the value calculated from the NPI

asymptotically approaches the direct calculation, which has become constant, demonstrating

that the distribution of dissipation function values is approaching a Dirac-delta distribution.

We note that significantly longer trajectories are needed to see this convergent behaviour

than were necessary to see the ES-FT derived value of the NPI fail. Due to the large

exponential functions being evaluated it was necessary to use quadruple precision in the

numerical evaluation.
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5.9 Truncated NPI

To avoid the problems caused by the lack of statistics at the negative edge of the probability

distribution it is advantageous to calculate the NPI using only the positive half of distribution

(values of A grater than zero). This half of the distribution can be mapped on to the negative

side using the ES-FT. When this is done to calculate the NPI, it is known as the partial range

NPI[44]. The partial range average shows better statistics than the ensemble average, but

its value is much less sensitive to changes in the distribution of the dissipation function. This

makes it much less appropriate for use as a diagnostic tool in experiments and simulations.

This was discussed in Section 2.6.1.

Instead of using only the positive side of the distribution, but still avoiding the noisy

negative wing of the distribution we can truncate the probability distribution symmetrically

about zero. This is similar to the pair NPI, including many pairs in the average. We can

prove that the NPI calculated over this truncated range has a value of unity. Writing out

the truncated NPI as an integral we have

⟨e−Ω̄tt⟩−R<Ω̄t<R =

ˆ R

−R
P̃ r(Ω̄t = A)e−AtdA (5.31)

where the exponential average is now a conditional ensemble average. Only trajectories

which have a value of the dissipation function within the truncated range, −R to R, are

included in the average. The probability distribution P̃ r(Ω̄t = A) is normalized over this

truncated range. We can apply the fluctuation theorem to Eq. (5.31) resulting in

⟨e−Ω̄tt⟩−R<Ω̄t<R =

ˆ R

−R
P̃ r(Ω̄t = −A)dA. (5.32)

Preforming a change of variables to replace −A with U we have

⟨e−Ω̄tt⟩−R<Ω̄t<R = −
ˆ −R

R
P̃ r(Ω̄t = U)dU (5.33)

and then swapping the limits of integrating gives

⟨e−Ω̄tt⟩−R<Ω̄t<R =

ˆ R

−R
P̃ r(Ω̄t = U)dU. (5.34)

Recognising that this is the integral over the entire truncated range of the probability dis-

tribution, which is normalized over this same range, we have the truncated form of the

NPI

⟨e−Ω̄tt⟩−R<Ω̄t<R = 1. (5.35)

Using the same histogram of the dissipation function from simulation data calculated

in Figure 5.1 we can calculate the value of the truncated NPI for a variety of range sizes.

This is shown in Figure 5.14. Here we have used an applied colour field strength of 0.71 and

trajectory length of 19,100 time steps. The error bars were calculated by splitting the data

into 10 sets each containing 107 trajectories. The histogram of dissipation function values

75



 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

〈 e
xp

[-Ω
- tt]

〉 -
R

 <
Ω- t<

 R
 

Range, R

Truncated NPI

Figure 5.14: Truncated NPI, Eq. (5.31), calculated using data from the colour conductiv-
ity simulation. The range, R, corresponds to the value of A up to which the probability
distribution in Figure 5.1 is included in the calculated average.

was constructed for each data set, and the truncated average calculated from that. The

standard deviation of these data sets is used as the error bars in Figure 5.14.

We can see that initially the truncated ensemble average has the expected value of unity,

demonstrating the new truncated NPI. As the range increases, the value of the average

remains unity, with small error bars, until the range reaches R = 0.5 and the noise and error

bars increase. This point corresponds roughly to the negative edge of the dissipation function

histogram, with at least 16 trajectories in each histogram bin inside this range. The averages

calculated with a smaller range than this show good statistics, with ⟨e−Ω̄tt⟩−0.5<Ω̄t<0.5 =

1.01 ± 0.01. This method is a viable way to more easily calculate the value of the NPI in

computational and experimental systems. The method will only be effective when there is

a portion of the negative side of the distribution of dissipation function values which has

good statistics.

5.10 Conclusion

The properties of the subject of the NPI, the average
〈

exp
[

−Ω̄tt
]〉

, have been studied in

relation to the sampling in the system. The Evans-Searles Fluctuation Theorem predicts

that given an infinite amount of sampling, the value of the ensemble average must be unity.

If we take a fixed amount of sampling, but extend the duration of the trajectory, the NPI

has a value of unity initially, but tends towards a value of less than unity. This is because

the rare events become both rarer, and more significant in the calculation of the ensemble

average. We have analysed the statistical sampling of errors to demonstrate in detail why

the full ensemble average is realised at short trajectory durations but not long durations.

To do this we first analysed the effects of rare events in demonstrating the ES-FT. For
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trajectory durations significantly longer than those where the NPI starts to fail, we found

that a Dirac-delta function was an accurate approximation to the distribution of dissipation

function values. This is evidenced by the value of the self-diffusion coefficient calculated using

this method converging to the directly calculated value. This approximation assumes no rare

events are observed in the simulation, which at long times, for a fixed amount of sampling,

becomes an accurate assumption. We expect that if we choose a fixed trajectory duration,

and increased the amount of sampling, the rare events would eventually be sampled, and

the ensemble average would approach a value of unity. We have also developed a truncated

form of the ensemble average for the NPI which shows better statistics, provided some rare

events are observed.
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Chapter 6

Steady State NPI

Fluctuations in the dissipation function in steady state systems can be described by the

Steady State Fluctuation Theorem[63, 40, 65, 34], discussed in Section 2.8. It is given by

lim
t→∞

1

t
ln

[

Pr(Ω̄ss,t = A)

Pr(Ω̄ss,t = −A)

]

= A (6.1)

where Ω̄ss,t is the time average of the dissipation function calculated over a steady state

trajectory of length t. These trajectories start from a point in the steady state. Since this

equation has the same form as the ES-FT, from which the NPI can be derived, a similar

relationship can be derived for steady state systems,

⟨e−Ω̄ss,tt⟩ = 1. (6.2)

Because the Steady State Fluctuation Theorem, Eq. (6.1), is asymptotic we would expect

the steady state NPI, Eq. (6.2), to hold as the length of the steady state trajectory gets

longer.

To investigate the behaviour of the steady state NPI we will use a colour conductivity

system where a colour field is applied to each of the particles. The equations of motion

and thermostat are given in Section 2.3.2. To generate steady state trajectories, we start

from an equilibrium isokinetic distribution, before applying a colour field of strength 0.29,

and allowing the system to come to a steady state over 10,000 time steps. Steady state

trajectories 30,000 time steps long are initiated from this point in series, each separated

by 2,000 time steps of simulation to ensure statistical independence. The timestep used

was 0.001, in a two dimensional 8 particle system with a density of 0.6. An ensemble of 107

trajectories was simulated. From this ensemble we can calculate the value of the steady state

NPI given in Eq. (6.2) for a range of values of t. These results are presented in Figure 6.1.

The uncertainty is calculated by splitting each ensemble into 10 sets and calculating the

standard error.

The steady state NPI is not within the uncertainty of the expected value of unity. It

also shows no improvement as the trajectory length increases, to within the precision of

our calculations. This implies that this exponential average could show the same statistical
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Figure 6.1: Value of the steady state NPI from the simulation of a colour conductivity
system for a range of steady state trajectory lengths, t.

convergence issues as the transient NPI, discussed in Chapter 5.

6.1 Truncated Steady State NPI

To attempt to improve the statistics we can calculate a truncated version of the steady state

NPI. Since the Steady State FT, Eq. (6.1), has the same form as the ES-FT, we can derive

the truncated version of the NPI in the same way,

⟨e−Ω̄ss,tt⟩−R<Ω̄ss,t<R = 1. (6.3)

Using data from steady state simulations we can calculate the truncated NPI, Eq. (6.3),

with the same method described in Section 5.9. The results are shown in Figure 6.2, for a

selection of trajectory lengths. The error bars shown are the standard error from repeating

the calculation with each ensemble split up into 10 sets.

For all trajectory lengths we see a very similar trend. While the truncated steady state

NPI does initially have a value of unity, it drops quickly to the value of the untrunctated

average. This is very different to the trend seen for transient systems, where the truncated

NPI maintained a value of unity until the range reached the edge of the probability distribu-

tion on the negative side. Truncating the ensemble average does not allow us to calculate the

steady state NPI with better statistics. This implies that the reason the steady state NPI

relationship does not hold for this computational system is not primarily due to insufficient

sampling.
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Figure 6.2: The steady state NPI calculated over a truncated range, given by the Eq. (6.3).
Results are from the colour conductivity simulation, with trajectories initiated from the
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6.2 Gradient Corrected Steady State FT

The steady state NPI relies on the convergence of the Steady State Fluctuation Theo-

rem. This fluctuation theorem converges quickly enough with the trajectory length to be

observable[34], and can be verified to arbitrary accuracy. Since we saw no convergence of

the steady state NPI with increasing trajectory length, in Figure 6.1, we can look at the

behaviour of the Steady State FT in our system.

How well the Steady State FT holds can be tested by plotting the LHS of the FT against

the RHS,
1

t
ln

[

Pr(Ω̄ss,t = A)

Pr(Ω̄ss,t = −A)

]

= A. (6.4)

The relative probabilities can be computed for each histogram bin, generating a data point

for each value of A. This was done for the t = 18 simulation, shown in Figure 6.3.

The slope of the line of best fit, 1.0094±0.0002, was calculated using a least squares

fit to the data. While the slope is not unity, we can see that the data appears to be very
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Trajectory length (t) Slope of Steady State FT test (C)

6 1.030±0.004
12 1.015±0.001
18 1.0095±0.0005

Table 6.1: Calculated values for the gradient factor, C, described in Eq. (6.5) for the simu-
lation with each trajectory length.

linear. To investigate how linear the data is, we can plot the slope of the graph in Figure 6.3

against the amount of data that is used in the slope calculation. This was done for the

t = 18 simulation in the top plot of Figure 6.4, where all data points between −R and R

are included in the slope calculation.

We can see that the slope of the Steady State FT test is mostly constant. The noise

initially is due to an insufficient number of data points used to calculate the slope, and the

noise at large values of the range is due to a lack of statistics in calculating the relative

probabilities in the wings of the distribution. Since this slope is constant, we can write an

empirical version of Steady State FT,

1

t
ln

[

Pr(Ω̄ss,t = A)

Pr(Ω̄ss,t = −A)

]

= CA (6.5)

where C is a constant that we will label the gradient factor. We will call Eq. (6.5) the

gradient corrected steady state FT. When the LHS of the equation is plotted against A,

the slope will be C. This is the same slope calculated in Figure 6.4. We can calculate the

value of the gradient factor, C, and the linearity of the demonstration graph for the other

simulation times in the same way as above. For the example lengths of t = 6 and t = 12,

this can be seen in the second two plots of Figure 6.4, where the calculated slope is plotted

against the amount of data used in the calculation. In both cases the calculated slope is

not unity for all values of the range. Discounting the noisy initial and final sections, the

slope of the Steady State FT test is roughly constant for t = 12. However, it is noisier than

the t = 18 results. The results from the t = 6 simulation show that the slope is constantly

increasing as the amount of data in the calculation is increased. This data is much less linear

than the simulations that use longer trajectory lengths.

To calculate a value for the gradient factor, C, we will use the value of the slope in the

middle of the approximately constant region, with the uncertainty given by the fluctuations

within this region. In the case of the shortest trajectory length, t = 6, we will use a value

for the slope in the middle of the calculated range, R = 0.4, with the uncertainty given by

upper and lower values of the slope, excluding the noisy initial and final sections. These

values are presented in Table 6.1.

For T-mixing systems the distribution of the dissipation function must become Gaussian

asymptotically in time[117]. This implies that the Steady State FT will become linear for

sufficiently long trajectory lengths, consistent with our observations from simulation seen in

Figure 6.4.

To see the convergence of the Steady State Fluctuation Theorem we can graph the slope,

C, against steady state trajectory length. These results are presented in Figure 6.5, and
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we can see that for our computational system the Steady State FT is converging with time.

The values of C used were calculated with a range that extended 2 standard deviations from

the mean on the negative side of the distribution of dissipation function values. The error

bars were calculated with 10 independent blocks in the simulation.

6.3 Gradient Corrected Steady State NPI

From the empirical gradient corrected steady state FT, Eq. (6.5), we can derive a corrected

version of the NPI for steady state systems. This gradient corrected NPI will have the

gradient factor contained within the exponential average,

⟨e−CΩ̄ss,tt⟩−R<Ω̄ss,t<R =

ˆ R

−R
P̃ r(Ω̄ss,t = A)e−CAtdA. (6.6)

Substituting in the gradient corrected steady state FT gives

⟨e−CΩ̄ss,tt⟩−R<Ω̄ss,t<R =

ˆ R

−R
P̃ r(Ω̄ss,t = −A)dA (6.7)

which after a change of variables can be rewritten as

⟨e−CΩ̄ss,tt⟩−R<Ω̄ss,t<R =

ˆ R

−R
P̃ r(Ω̄ss,t = A)dA = 1, (6.8)

recognising that the probability distribution is normalized over the range −R to R. This

truncated gradient corrected steady state NPI was calculated with the simulation data for
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a range of values of R. The results are presented in Figure 6.6 for a selection of trajectory

lengths.

For all lengths the gradient corrected NPI is within the error bars of unity, the expected

value. The corrected version is a significant improvement over the uncorrected version. We

can also note that truncating the gradient corrected steady state NPI has little effect on the

calculated value, though the error bars tend to increase with increasing range. Since the

corrected version of the NPI works while truncated the NPI does not, we can infer that the

lack of convergence of the steady state NPI is not due to a lack of statistics but a failure of

the Steady State FT to converge quickly enough. The regular version of the steady state NPI

is not equal to the expected value of unity, and the corrected version can only be calculated

after first empirically determining how well the FT has converged, so the steady state NPI

will not be useful as a diagnostic tool in simulation and experiment.

6.4 Convergence of the Steady State NPI

To investigate the convergence of the steady state NPI further we can study its behaviour

using model Gaussian distributions for the dissipation function. For long trajectory lengths,

the distribution must become Gaussian around the mean according to the Central Limit

Theorem[117]. From the corrected form of the steady state FT, Eq. (6.5), we can construct

a Gaussian distribution that would satisfy this relationship. We saw in Figure 6.4 that it is

reasonable to assume a linear relationship for the steady state FT for long enough trajectory

lengths. Substituting the equation for a Gaussian distribution,

Pr(Ω̄ss,t = A) =
1

σ
√

2π
exp

[

−
(A − µ)2

2σ2

]

(6.9)

into the gradient corrected FT gives

exp[CAt] =
exp

[

− (A−µ)2

2σ2

]

exp
[

− (−A−µ)2

2σ2

] (6.10)

CAt = ln

[

exp

[

−
(A − µ)2

2σ2
+

(−A − µ)2

2σ2

]]

(6.11)

CAt =
4Aµ

2σ2
(6.12)

σ2 =
2µ

Ct
. (6.13)

The variance of the distribution of the time averaged dissipation function, σ2, is twice

the mean of the dissipation function, µ, divided by the gradient factor, C and trajectory

duration, t. This specifies the Gaussian distribution that satisfies the corrected form of

the steady state FT, where the value of C determines how close it is to converging. The

probability distribution of the time average of the dissipation function is now given by

Pr(Ω̄ss,t = A) =
1

√

4µπ/Ct
exp

[

−
Ct(A − µ)2

4µ

]

. (6.14)
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with the error bars calculated from the data being split into 10 sets. The blue dotted line
corresponds to the uncertainty in the gradient corrected NPI due to the uncertainty in C.

87



We can use this to calculate the value of the NPI

⟨e−Ω̄ss,tt⟩ =

ˆ ∞

−∞
Pr(Ω̄t = A) exp[−At]dA (6.15)

=

ˆ ∞

−∞

1
√

4µπ/Ct
exp

[

−
Ct(A − µ)2

4µ

]

exp[−At]dA (6.16)

=
1

√

4µπ/Ct
exp

[

−Ctµ

4

]
ˆ ∞

−∞
exp

[

−CtA2

4µ
−
(

1 −
C

2

)

At

]

dA. (6.17)

Recognising that this is the definite integral over a Gaussian distribution we have

⟨e−Ω̄ss,tt⟩ =
1

√

4µπ/Ct
exp

[

−Ctµ

4

]

×
√

4πµ

Ct
exp

[

µt
(

1 − C
2

)2

C

]

(6.18)

for Ct/4µ > 0. Now,

⟨e−Ω̄ss,tt⟩ = exp

[

−µt

(

1 −
1

C

)]

. (6.19)

This equation shows how the value of the steady state NPI will change with the mean of

the time averaged dissipation function, the trajectory duration and the slope of the Steady

State FT, C. It is displayed graphically in Figure 6.7. Substituting in the calculated values

from the simulation system for t = 18 of µ = 0.0994 and C = 1.0095 we can calculate the

expected value of the NPI, if the data was Gaussian. This gives a value for the exponential

average of 0.983, which agrees with the simulation result of 0.983 ± 0.001.

From Eq. (6.19) we can see that when C=1 the NPI has a value of unity for all values

of the mean because the distribution of dissipation function values satisfies the regular

fluctuation theorem. Also, when µ = 0, corresponding to an equilibrium system, the NPI

has a value of unity. As the mean of the distribution increases, the value of the NPI drops

faster with an increasing gradient factor.

The Steady State Fluctuation Theorem, Eq. (6.1), converges as the trajectory length, t,

approaches infinity. The mean of the distribution of the time averaged dissipation function

Ω̄ss,t will be constant with trajectory length. Thus, from Eq. (6.19), to keep the NPI constant

with t

t ∝
1

1 − 1
C

1

t
∝

C − 1

C
. (6.20)

In order for the value of the NPI to converge as t → ∞ the difference between the slope of

the Steady State FT and unity, divided by the slope, must converge to zero faster than 1/t.

Using the steady state simulation data we can examine the convergence of the Steady

State FT. Figure 6.8 shows (C−1)/C plotted against 1/t for a range of steady state trajectory

lengths. We can see that to within the uncertainty the relationship is linear. This is

consistent with the observation in Figure 6.1 that the steady state NPI does not converge

with increasing trajectory length.

To further examine the behaviour of the NPI calculated using the Gaussian distribution
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we can calculate the truncated form of the NPI, given by

〈

e−Ω̄ss,tt
〉

−R<Ω̄ss,t<R
=

´ R
−R Pr(Ω̄ss,t = A) exp[−At]dA
´ R
−R Pr(Ω̄ss,t = A)dA

. (6.21)

Substituting in the Gaussian distribution for the probability of the time average of the

dissipation function, Eq. (6.14) we have

〈

e−Ω̄ss,tt
〉

−R<Ω̄ss,t<R
=

exp

[

µt(1−(C/2)2)
C

](

erf

[

CR/2µ+(1−C/2)√
C/µt

]

− erf

[

−CR/2µ+(1−C/2)√
C/µt

])

exp
[

µtC
4

]

(

erf

[

CR/2µ−C/2√
C/µt

]

− erf

[

−CR/2µ−C/2√
C/µt

]) .

(6.22)

Selecting values for C and µ corresponding to the colour conductivity simulation at time

t = 18 we can plot the truncated NPI against the truncated range, R. This can be seen in

Figure 6.9. We can see that this result from the Gaussian distribution has the same shape

and is within the error bars of the truncated NPI calculated from the simulation data. Since

the Gaussian distribution is effectively perfectly sampled, the shape of this truncated NPI

with increasing range is a property of the function. The observed difference between the

value of the truncated steady state NPI and unity is not a result of limited statistics in our

computational system.

6.4.1 Linear Response Regime

In the linear response regime the mean and variance of the steady state dissipative flux, Jt,

are known. The dissipation function of the system can be written in terms of the dissipative
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flux. We will assume the distribution of dissipation function values is Gaussian, which will

allow us to calculate the value of the steady state NPI for systems in the linear response

regime.

The variance of the time integral of the dissipative flux[13, 32] is defined to be

〈

J2
t

〉

eq
≡

〈

(
ˆ t

0
J(s)ds

)2
〉

eq

(6.23)

=

ˆ t

0
ds′
ˆ t

0
ds⟨J(s)J(s′)⟩eq (6.24)

=

ˆ t

0
ds′
ˆ t

0
ds⟨J(s − s′)J(0)⟩eq (6.25)

since we can shift the equilibrium autocorrelation function in time. Making the substitution

u = s − s′,
〈

J2
t

〉

eq
=

ˆ t

0
ds′
ˆ t−s′

−s′

du⟨J(u)J(0)⟩eq . (6.26)

Changing the order of integration we have

〈

J2
t

〉

eq
=

ˆ 0

−t
du

ˆ t

−u
ds′⟨J(u)J(0)⟩eq +

ˆ t

0
du

ˆ t−u

0
ds′⟨J(u)J(0)⟩eq (6.27)

=

ˆ 0

−t
du(t + u)⟨J(u)J(0)⟩eq +

ˆ t

0
du(t − u)⟨J(u)J(0)⟩eq (6.28)

= 2t

ˆ t

0
ds⟨J(s)J(0)⟩eq − 2

ˆ t

0
s⟨J(s)J(0)⟩eqds. (6.29)

The equilibrium variance will be the same as the steady state and transient variance in the

weak field limit. The dissipation function is given by[63]

Ω̄t = −
1

t
βJtV Fex, (6.30)

so the variance of the time averaged dissipation function in the steady state, σ2
ss, is given by

σ2
ss = σ2

Tr =

(

1

t
βV Fex

)2(

2t

ˆ t

0
ds⟨J(s)J(0)⟩eq − 2

ˆ t

0
s⟨J(s)J(0)⟩eqds

)

. (6.31)

This is the same as the variance in the transient, σ2
Tr . In the transient case the distribution

of Ω̄t satisfies the ES-FT, which allows us to calculate mean of the transient dissipation

function from the variance[113],

µTr =
tσ2

Tr

2
(6.32)

= (βV Fex)2
(
ˆ t

0
ds⟨J(s)J(0)⟩eq −

1

t

ˆ t

0
s⟨J(s)J(0)⟩eqds

)

. (6.33)

The mean of the dissipative flux for steady state systems is given by the Green-Kubo[68,
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67] relation,

⟨J̄t⟩Fe = −βV Fex

ˆ ∞

0
⟨J(0)J(s)⟩eqds (6.34)

and so the mean of the time averaged dissipation function in the steady state, µss, is given

by

µss = (βV Fex)2
ˆ ∞

0
⟨J(0)J(s)⟩eqds. (6.35)

As t → ∞ the integral
´ t
0 s⟨J(s)J(0)⟩eqds in Eq. (6.33) converges and approaches a constant

value. As time increases we can see that

lim
t→∞

µss = µTr +
k

t
(6.36)

where k = limt→∞(βV Fe)2
´ t
0 s⟨J(s)J(0)⟩eqds .

In order to calculate the value of the steady state NPI, Eq. (6.19), we need to know the

slope of the Steady State FT, C. For a Gaussian distribution of dissipation function values,

the natural log of the relative probabilities is given by

ln

[

Pr(Ω̄ss,t = A)

Pr(Ω̄ss,t = −A)

]

=
2µss

σ2
ss

A. (6.37)

The slope of the Steady State FT is then C = 2µss/tσ2
ss = µss/µTr. Substituting this into

the equation for the steady state NPI, Eq. (6.19) we have

⟨e−Ω̄ss,tt⟩ = exp [−k] .

In the linear response regime the steady state NPI is a constant whose value depends on the

autocorrelation function of the dissipative flux. In the delta correlated case this reduces to

a value of unity. That is, when there is no time correlation for the value of J . In the low

field limit we have ⟨exp[−Ω̄ss,tt]⟩ = 1 − k + 1
2k2 + · · · so the steady state NPI decays from

unity as O(F 2
ex).

6.5 Conclusion

The nonequilibrium partition identity can be more easily calculated in transient systems

using its truncated form. The truncated from is not useful in calculating the value of the

steady state NPI. Although the Steady State Fluctuation Theorem converges with time, we

have shown that for systems where the distribution of dissipation function values is Gaussian,

the steady state NPI only converges to unity if the Steady State FT converges sufficiently

quickly. That is, the difference between the slope of the Steady State FT and unity, divided

by the slope, must converge to zero faster than one over the trajectory length. In the linear

response regime the FT converges at precisely this rate, so the value of the steady state NPI

is simply a constant with respect to the length of the steady state trajectory. Its value is

dependent on the field strength and the autocorrelation function of the dissipative flux, and

is unity in delta correlated systems.
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Chapter 7

The Instantaneous Fluctuation

Theorem

Fluctuation relations typically provide information about path integrals of phase functions

in time-reversible dynamical systems[4, 10, 71, 72, 118, 119, 120, 121, 122, 123, 77, 124, 125,

126, 127, 113]. In this chapter we will present a fluctuation relation that gives the relative

probability that the instantaneous values of a phase function take on opposite values, ±A,

in terms of the well known path integral of the dissipation function.

This new theorem is closely related to a key result by Evans et. al.[70] which gives the

form of the covariant dissipation function. An overview of the covariant dissipation function

is provided in Section 2.11. Evans et. al. introduce new notation useful in the derivation

we present. The dissipation function is a function of the dynamics of the system and a

distribution. Typically the distribution function used is the known initial distribution of the

system. The covariant dissipation function is defined with respect to the time dependent

distribution function as the system evolves.

To represent this situation exactly we will use this more detailed notation. The distri-

bution function used will be defined by the point in time, tb, at which the system takes on

this distribution. To fully specify the dissipation function we also need the variables τ , the

time interval the dissipation function is integrated over, and ta, the starting point of this

interval. We assume the dynamics are autonomous. We will use the notation set out in the

previous work[70] for the integrated dissipation function,

Ωτ (StaΓ; tb) ≡
ˆ ta+τ

ta

Ω(SsΓ; tb)ds ≡ ln

(

f(StaΓ; tb)

f(MT SτStaΓ; tb)

)

−
ˆ ta+τ

ta

Λ(SsΓ)ds (7.1)

where Γ is the phase space position at time 0, St is the phase space evolution operator

acting for a time t, MT is the time reversal operator, Ω(Γ; t) is the instantaneous dissipation

function defined with respect to the distribution function at time t, f(Γ; t) is the phase space

density at position Γ of the system at time t and Λ = ∂
∂Γ

· Γ̇ is the phase space expansion

factor.
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7.1 Derivation

To derive the new relation we consider a deterministic system initially at equilibrium at

time 0 that then undergoes a transient when a constant force is applied. We are interested

in the instantaneous probability of a phase function at some particular time, t1, during this

transient.

The Evans-Searles Fluctuation Theorem[63] involves a quantity now known as dissipa-

tion. The ES-FT gives the probability of observing a set of trajectories in some small volume

of phase space δVΓ centered on some phase space vector compared to the conjugate set of

antitrajectories,

p(δVΓ(Γ); 0)

p(δVΓ(MT S2t1Γ); 0)
= exp[Ω2t1(Γ; 0)] (7.2)

where MT (q,p) ≡ (q,−p) is the time reversal mapping[128], δVΓ(Γ) is the infinitesimal

volume around the phase space position Γ and p(δVΓ(Γ); 0) = f(Γ, 0)δVΓ(Γ) is the relative

number of ensemble members inside this volume at time 0. The length of the trajectory in

this case is 2t1. Conservation of phase space trajectories means that

p(δVΓ(Γ); 0) = p(δVΓ(St1Γ); t1) (7.3)

and

p(δVΓ(MT S2t1Γ); 0) = p(δVΓ(St1MT S2t1Γ); t1) (7.4)

because the volumes are defined such that they contain a fixed number of ensemble mem-

bers. Those ensemble members that are located within δVΓ(Γ) at t = 0 also flow through

δVΓ(St1Γ) at time t1. This allows us to write the ES-FT in terms of phase space volumes

at time t1.

p(δVΓ(St1Γ); t1)

p(δVΓ(St1MT S2t1Γ); t1)
= exp[Ω2t1(Γ; 0)]. (7.5)

Let us consider an arbitrary phase function, B(StΓ), that is odd under a time reversal

transformation. We can write the probability of particular values of the phase function,

B(StΓ) = A, in terms of the probability of infinitesimal volumes around particular phase

space positions. Summing each of these volumes gives the relative probability distribution

of such values,

Pr(B(St1Γ) = A)

Pr(B(St1Γ) = −A)
=

∑

δVΓ(St1Γ)|B=A
p(δVΓ(St1Γ); t1)

∑

δVΓ(St1Γ)|B=−A
p(δVΓ(St1Γ); t1)

. (7.6)

Substituting in Eq. (7.5) gives

Pr(B(St1Γ) = A)

Pr(B(St1Γ) = −A)
=

∑

δVΓ(St1Γ)|B=A
p(δVΓ(St1Γ); t1)

∑

δVΓ(St1Γ)|B=−A
exp[Ω2t1(Γ; 0)]p(δVΓ(St1MT S2t1Γ); t1)

. (7.7)

To understand this sum over volumes defined by phase space points St1Γ, where the prob-
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Time

Figure 7.1: A trajectory starting from Γ with B= −A at time t = t1, along with its
antitrajectory which begins from the time reversed map of S2t1Γ.

ability in the argument is defined by the point St1MT S2t1Γ we need to understand the

relationship between the trajectory and antitrajectory pair. This is represented visually in

Figure 7.1.

It is easy to see from Figure 7.1 why the dissipation function needs to be defined over

the time interval 0 to 2t1; at the mid point of the interval the position in phase space

that the trajectory has evolved to is the time reverse map of the position reached by the

antitrajectory. Since B(Γ) is odd under the time reversal transformation, for each trajectory

where B(St1Γ) = −A, the antitrajectory has B(St1MT S2t1Γ) = B(MT St1Γ) = A. This

allows us to rewrite the denominator of Eq. (7.7) in terms of the conjugate antitrajectory

volumes,

Pr(B(Γ(t1)) = A)

Pr(B(Γ(t1)) = −A)
=

∑

δVΓ(St1Γ)|B=A
p(δVΓ(St1Γ); t1)

∑

δVΓ(St1MT S2t1Γ)|B=A
exp[Ω2t1(Γ; 0)]p(δVΓ(St1MT S2t1Γ); t1)

.(7.8)

Using the definition of the dissipation function, Eq. (2.33), exp[Ω2t1(Γ; 0)] =

exp[−Ω2t1(M
T S2t1Γ; 0)]. The initial distribution function is always assumed to be even

in the momenta. Eq. (7.8) now becomes

Pr(B(Γ(t1)) = A)

Pr(B(Γ(t1)) = −A)
(7.9)

=

∑

δVΓ(St1Γ)|B=A
p(δVΓ(St1Γ); t1)

∑

δVΓ(St1MT S2t1Γ)|B=A
exp[−Ω2t1(MT S2t1Γ; 0)]p(δVΓ(St1MT S2t1Γ); t1)

.

Recognising that the sums in both the numerator and the denominator are over all phase

space volumes defined by some Γ′, where B(St1Γ′) = A, Eq. (7.9) can be rewritten as a
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conditional average,

Pr(B(St1Γ) = A)

Pr(B(St1Γ) = −A)
=

1
〈

e−Ω2t1 (Γ;0)
〉

B(St1Γ)=A

. (7.10)

Similarly

Pr(B(St1Γ) = A)

Pr(B(St1Γ) = −A)
=
〈

e−Ω2t1 (Γ;0)
〉

B(St1Γ)=−A
. (7.11)

This relationship is the Instantaneous Fluctuation Theorem, written in terms of conditional

ensemble averages of exponentials of the dissipation function path integrals. These path

integrals are symmetrically extended both before and after the time at which the instanta-

neous fluctuation relation is required. This instantaneous fluctuation relation is non-local in

time. This is a standard feature of fluctuation relations that are required over time intervals

that do not begin at the initial known distribution[70]. Another example is the steady state

Evans-Searles fluctuation relation[63, 34].

We can look at the behaviour of the relative probabilities of opposite values of A as a

function of time, t1. Initially, when t1 = 0 the dissipation function, Ω2t1(Γ; 0) = 0, and so

the RHS of Eq. (7.11) is equal to 1 and both values of A are equally probable. At later

times the value of the dissipation function changes, meaning the opposite values of A are

not equally probable, corresponding to the irreversibility of the system growing.

The dissipation function in our new result can be written as a covariant dissipation

function[70] from Eq. (2.85) in Section 2.11,

Ω2t1(Γ; 0) = Ω0(S
t1Γ; t1). (7.12)

To those not used to the mathematical definition of dissipation the fact that Ω0(St1Γ; t1) ̸= 0

may seem strange. It is due to the fact that in our work we always assume that the initial

distribution is even in the momenta. This guarantees that the average velocity of the system

is zero with respect to the observer and it also guarantees that Ω0(Γ; 0) = 0, ∀Γ because

f(Γ; 0)/f(MTΓ; 0) = 1. At later times, f(Γ; t)/f(MTΓ; t)̸=1.

Clearly the right hand side of Eq. (7.10) is more involved to calculate, the simulation

needs to be run for twice as long. However, in certain circumstances this new fluctuation

relation may be the only way to calculate the value of the left hand side of the equation. For

example, it is often the case that the probability of a particular value of B = −A is be very

low, while the probability of B = A is substantial. In this case, calculating Pr(B = −A)

directly could be challenging and require a huge number of statistics, where as calculating the

other terms in the instantaneous fluctuation theorem may be straightforward, particularly if

care is taken to select the form of the equation which includes the conditional average with

the more probable trajectories. This is one possible direct application of the new theorem

to real problems.
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7.2 Restricted Phase Space NPI

We may obtain an obvious summing rule from Eq. (7.10) and Eq. (7.11). Upon setting

A = 0 we obtain
〈

e−Ω2t1 (Γ;0)
〉

B(St1Γ)=0
= 1. (7.13)

This may be understood in terms of ergodic consistency. When B(St1Γ) = 0 the set of

trajectories used to form the above average is the exact same set as the conjugate antitra-

jectories and thus we have ergodic consistency over this restricted set of phase space. The

phase space volume at time 0 coincides with the phase space volume at time 2t1, since the

effect of B being odd under time reversal symmetry is lost when we set B(St1Γ) = 0. Be-

cause of this ergodic consistency the above summing rule may be viewed as an application of

the NPI to this restricted set of phase space. The ES-FT can also be applied to this subset

of phase space.

7.3 Numerical Results

To get a better understanding of the convergence and nature of the new instantaneous fluc-

tuation relation we studied it numerically with a simple system. We modeled shear flow

in a constant kinetic energy system that started from the equilibrium isokinetic ensemble.

We chose to look at this in a two-dimensional 32 particle system. An isokinetic thermo-

stat was used to obtain the desired starting conditions and keep a constant kinetic energy

throughout the simulation. The system is subject to a constant shear at time t > 0 using

the SLLOD equations of motion[27, 129] and square unit cell Lees-Edwards periodic bound-

ary conditions[102]. Particle interactions were modeled using the WCA potential[87]. The

temperature used was T = 1, the density was ρ = 0.6 and the time step used was dt = 0.001.

Transient trajectories of length t1 = 0.1 were initiated from positions found in the equilib-

rium system and were propagated using the SLLOD equations of motion, Eq. (2.13) and

(2.14) in Section 2.3.1, with an applied strain rate of γ̇ = 0.1. An ensemble of 5 × 106

trajectories were simulated.

7.3.1 Derivation of Dissipation Function

To demonstrate the new theorem we need to know the form of the dissipation function for

our numerical system[4]. From the definition of the dissipation function we have

Ωt = ln

(

f(Γ, 0)

f(StΓ, 0)

)

−
ˆ t

0
Λ(SsΓ)ds (7.14)

= β(H0(t) − H0(0)) +

ˆ t

0
2Nα(SsΓ)ds (7.15)

since our system starts in the canonical distribution. H0(t) is the internal energy of the

system at time t. So, Eq. (7.15) is the change in internal energy less that due to the

thermostat.

Ωt =

ˆ t

0
βḢ0(s) + 2Nα(SsΓ)ds. (7.16)
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The change in internal energy can be split into the kinetic, KE, and potential energy, Φ,

components

Ḣ0(t) =
∂KE

∂t
+

∂Φ

∂t
(7.17)

=
∂

∂p

(

p2

2m

)

·
∂p

∂t
+

∂Φ

∂q
·
∂q

∂t
(7.18)

=
N
∑

i

pi · ṗi

m
−

N
∑

i

Fi · q̇i. (7.19)

Substituting in the SLLOD equations of motion, Eq. (2.13) and (2.14), we have

Ḣ0(t) =
N
∑

i

(

Fi · pi

m
−

γ̇pyipxi

m
−

α(StΓ)pi · pi

m
−

Fi · pi

m
− γ̇Fxiyi

)

(7.20)

= −γ̇
N
∑

i

(pyipxi

m
+ Fxiyi

)

− 2α(StΓ)KE (7.21)

= Ḣ(ad)
0 (t) −

2Nα(StΓ)

β
(7.22)

where

Ḣ(ad)
0 (t) = −γ̇

N
∑

i

(pyipxi

m
+ Fxiyi

)

(7.23)

is the adiabatic in energy. The dissipation function is given by combing Eq (7.16) and

Eq (7.22),

Ωt = β

ˆ t

0
Ḣ(ad)

0 (s)ds (7.24)

= −β

ˆ t

0
γ̇V Pxy(S

sΓ)ds. (7.25)

where Pxy is the xy component of the pressure tensor, V is the area of the unit cell, pyi

and pxi are the components of the peculiar momenta of particle i, Fxi is the x component

of force on particle i and yi is the y component of the position.

The computer simulation is run using periodic boundary conditions, so it is easier to

calculate the value of the dissipation function when it is rewritten in terms of pairs of

particles. Writing the total potential in terms of the potential of pairs of particles, φij , we

have

Φ =
1

2

N
∑

i=1

N
∑

j=1

(1 − δij)φij . (7.26)

Taking the force term in Eq. (7.23) we have

Fxi ≡ −
∂Φ

∂xi
= −

N
∑

j=1

(1 − δij)
∂φij

∂xi
. (7.27)
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Let us define ∆xij = xj − xi and ∆yij = yj − yi. So,

∂φij

∂xi
= −

∂φij

∂∆xij
=

∂φij

∂∆xji
. (7.28)

Now,

N
∑

i=1

Fxiyi =
N
∑

i=1

N
∑

j=1

(1 − δij)
∂φij

∂xi
yi (7.29)

= −
1

2

N
∑

i=1

N
∑

j=1

(1 − δij)
∂φij

∂∆xij
∆yij . (7.30)

Let Fxij ≡ ∂φij

∂∆xij
, the force on particle i due to j. So,

N
∑

i=1

Fxiyi = −
1

2

N
∑

i=1

N
∑

j=1

(1 − δij)Fxij∆yij (7.31)

= −
N
∑

i=1

N
∑

j=i+1

Fxij∆yij . (7.32)

Substituting this into Eq. (7.23) gives the adiabatic change in energy

Ḣ(ad)
0 = −γ̇

⎛

⎝

N
∑

i

pyipxi

m
−

N
∑

i=1

N
∑

j=i+1

Fxij∆yij

⎞

⎠ (7.33)

which leads to the integrated dissipation function from Eq. (7.24),

Ωt = −βγ̇

ˆ t

0
ds

N
∑

i

pyipxi

m
−

N
∑

i=1

N
∑

j=i+1

Fxij∆yij . (7.34)

7.3.2 Phase Function Selection

In the analysis above we generate the antitrajectories using a time reversal map of the final

point in a trajectory, and then evolve this point in time using the equations of motion. A

time reversal map in our chosen system would change the sign of the strain rate, γ̇. It

is inconvenient and unnecessary to run the simulation with two values of γ̇ because we

can instead use a different trajectory mapping. The appropriate mapping is known as

the Kawasaki mapping[27], (x, y, px, py, γ̇) → (x,−y,−px, py, γ̇). Evolving the new point

generated from this mapping forward in time using a strain rate γ̇ generates the same

antitrajectory as evolving a time reversed map point forward in time with the strain rate

−γ̇. The analysis of this system is otherwise identical to the general case above.

In order to demonstrate the new fluctuation relation we need to select a phase function of

the system that is odd under the Kawasaki mapping. We can then numerically calculate the

relative probabilities of particular values of the phase function at a given time, and compare

this to the integrated dissipation function calculated over twice this time. A convenient
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phase function to use is the dissipative flux,

V Pxy(Γ) =
N
∑

i=1

[pyipxi

m
+ Fxiyi

]

. (7.35)

Although V Pxy(Γ) is even under the time reversal mapping it is odd under the Kawasaki

mapping, hence V Pxy(Γ) is a suitable phase function to investigate the Instantaneous FT.

Rewritten for easier computation in a system which has periodic boundary conditions this

becomes

V Pxy(Γ) =
N
∑

i=1

pyipxi

m
−

N
∑

i=1

N
∑

j=i+1

Fxij∆yij . (7.36)

7.3.3 Demonstration of the Instantaneous Fluctuation Theorem

To demonstrate the new fluctuation relation we need to calculate the relative probability of

positive and negative values of V Pxy(StΓ) at each time we are interested in for a system

undergoing planar shear at constant shear rate γ̇. This was done by constructing frequency

histograms from an ensemble of trajectories, dividing the values of V Pxy(St1Γ) into discrete

bins and taking the ratio of frequencies for a positive valued bin to the corresponding negative

bin. The integrated dissipation function, Ω2t1(Γ; 0), was calculated for each time interval

2t1.

We calculated the conditional average,
〈

e−Ω2t1 (Γ;0)
〉−1

V Pxy(St1Γ)=A
, based on the value of

V Pxy(St1Γ) . The relative probability was plotted against the conditional average, seen in

Figure 7.2(a). The uncertainties given in the equations in Figure 7.2 are the standard errors

from the least squares fit of the data. To the order of the standard error, the slope of this

graph is unity, demonstrating the new fluctuation relation. It was observed that the slope

of (a) trended upwards towards unity with an increasing number of ensemble members used

in the average. The system displays non-Gaussian statistics, a common feature in other

nonequilibrium systems[130, 37, 75, 84, 116, 131] and nonequilibrium averages such as the

Nonequilibrium Partition Identity[27], and it is not straightforward to accurately determine

the uncertainty in these calculations. In Figure 7.2 (a) and (b) we also demonstrated the

equivalence of the two forms of the Instantaneous Fluctuation Theorem, Eq. (7.10) and

Eq. (7.11).

Since the form of this new fluctuation relation is not necessarily intuitive, it is instructive

to look at the behaviour of an altered form of the relation. We can consider the case where

the dissipation function is integrated only up to the time where the relative probabilities of

the phase functions are measured, i.e. over the time interval 0 to t1. This simulation was

conducted in the same manner as above and the results are included in Figure 7.2(c). The

fluctuation relation is clearly not satisfied in this case as the slope of the curve is not 1. This

demonstrates that the use of conjugate sets of trajectories and antitrajectories is essential

in this fluctuation relation, as it is in the original Evans-Searles fluctuation relation[33].
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Figure 7.2: (a)
〈

e−Ω2t1 (Γ;0)
〉−1

V Pxy(St1Γ)=A
, demonstration of Eq. (7.10) with a line of best

fit y = (0.994 ± 0.001)x + (0.006 ± 0.001). (b)
〈

e−Ω2t1 (Γ;0)
〉

V Pxy(St1Γ)=−A
, demonstration of

Eq. (7.11), the second equivalent form of the relation. Note that the ×’s are falling on top
of the circles. (c)

〈

e−Ωt1 (Γ;0)
〉

V Pxy(St1Γ)=−A
, test of altered form of the relation with a line

of best fit y = (0.488 ± 0.003)x + (0.497 ± 0.003).

7.3.4 Additional Phase Function Demonstrations

To prove that this result is not unique to the dissipative flux we demonstrated the new the-

orem using the phase functions
∑N

i=1 pyipxi/m and −
∑N

i

∑N
j=i+1 Fxijyij . These functions

are the kinetic and configurational components of the dissipative flux, and so are clearly

different from it. In both cases the new instantaneous fluctuation relation is satisfied, seen

in Figure 7.3.

7.3.5 Demonstration of the ES-FT in Ergodic Subsets of Phase

Space

Subsets of phase space defined by B(St1Γ) = 0 are ergodic over the time interval t1, and as

such the ES-FT can be applied to them.

Pr(Ω2t1 (Γ; 0) = A)B(St1Γ)=0

Pr(Ω2t1(Γ; 0) = −A)B(St1Γ)=0
= exp[A] (7.37)

where the trajectories included in the probability calculation are only those with B(St1Γ) =

0. Using the same computational system as above, and the phase function B = V Pxy we

can demonstrate the Evans-Searles FT in this subset of phase space.

Trajectories satisfying the criteria V Pxy(St1Γ) = 0 were selected, and the dissipation

function was calculated over the interval (0, 2t1). We demonstrated the FT in the usual
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Figure 7.3: Demonstration of the Instantaneous Fluctuation Theorem using the kinetic
(B =

∑N
i=1 pyipxi/m) and configurational (B = −

∑N
i

∑N
j=i+1 Fxijyij) components of the

dissipative flux. The equations of best fit are y = (0.981 ± 0.002)x + (0.019 ± 0.002) and
y = (0.996 ± 0.001)x + (0.004 ± 0.001) respectively.

way, by plotting the LHS of Equation (7.37) against the RHS, seen in Figure 7.4. This

linear curve with a slope of unity demonstrates the fluctuation theorem. To demonstrate

that the FT is not applicable to all subsets of phase space, we carried out the procedure

using trajectories where V Pxy(St1Γ) = −5 and plotted this in the same graph. This value

for the dissipative flux was selected because it has a similar probability to V Pxy(St1Γ) = 0

and so comparable statistics will be obtained. The attempted demonstration curve is clearly

not linear, so the ES-FT is not applicable to this non-ergodic subset of phase space.

7.4 Conclusion

We have derived and demonstrated computationally a new fluctuation relation applicable

to physical systems which gives different information to those studied in the past. The

instantaneous fluctuation relation is similar in form to other fluctuation relations, except

it considers path integrals of dissipation that are symmetrically extended both before and

after the time at which the relative probabilities are compared. This work confirms the non

time-local nature of dissipation. We also demonstrated that time reversibility for the tra-

jectory/antitrajectory sets is a necessary condition for the fluctuation relation to hold. The

instantaneous fluctuation relation shows how in driven, thermostatted systems, irreversibil-

ity (as manifest in the relative probabilities of odd phase functions taking on opposite values)

grows as the system leaves equilibrium.
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Chapter 8

The Integrated Instantaneous

Fluctuation Theorem and its

Behaviour as the Steady State is

Approached

The Evans-Searles Fluctuation Theorem was one of the first exact results in far from equi-

librium statistical mechanics. It quantifies the probability of fluctuations of the dissipation

function with complimentary values. From this theorem an integrated form was derived to

make it more directly comparable with the Second Law of Thermodynamics[4]. This inte-

grated form gives the probability of positive fluctuations in the time averaged dissipation

function relative to the probability of negative fluctuations. More of phase space is included

in calculating the relative probability, so this form of the theorem displays better statistics

making it valuable in computational and experimental demonstrations[37, 15, 40].

8.1 Derivation of the Integrated Form

Like the ES-FT, we can derive an integrated form of the Instantaneous Fluctuation Theorem.

That is, we can compare the probability of all positive values of the phase function to

all negative values. The derivation below follows the same method as the derivation of

the Evans-Searles Integrated FT[4]. We define p+(t1) ≡ p(B(St1Γ) > 0) and p−(t1) ≡
p(B(St1Γ) < 0), the probability of positive and negative values of B respectively. We can

write
p−(t1)

p+(t1)
=

´∞
0 dAPr(B(St1Γ) = −A)
´∞
0 dAPr(B(St1Γ) = A)

. (8.1)
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Using one of the forms of the Instantaneous Fluctuation Theorem[132], Eq. (7.10), we can

rewrite this as

p−(t1)

p+(t1)
=

´∞
0 dA⟨e−Ω2t1 (Γ;0)⟩B(St1Γ)=APr(B(St1Γ) = A)

´∞
0 dAPr(B(St1Γ) = A)

. (8.2)

Recognising that this is an ensemble average calculated over all trajectories with a positive

value of A gives

p−(t1)

p+(t1)
= ⟨⟨e−Ω2t1 (Γ;0)⟩B(St1Γ)=A⟩A>0 = ⟨e−Ω2t1 (Γ;0)⟩B(St1Γ)>0. (8.3)

Similarly, from the other form of the Instantaneous Fluctuation Theorem, Eq. (7.11), it can

be shown that
p+(t1)

p−(t1)
= ⟨e−Ω2t1 (Γ;0)⟩B(St1Γ)<0. (8.4)

This new integrated fluctuation relation gives the relative probability of positive instanta-

neous values of an arbitrary phase function in terms of the dissipation function over the

symmetric interval surrounding the time in question. We can use p+(t1) + p−(t1) = 1 to

write

p+ =
1

1 + ⟨e−Ω2t1 (Γ;0)⟩B(St1Γ)>0

, (8.5)

the probability of a value of B being positive.

The integrated form of the instantaneous fluctuation relation will display better statistics

than the original form since it includes more values in the conditional average. This makes

it more applicable to computer simulations and experimental systems, particularly in the

case of long trajectories where rare events, which have a significant effect on the exponential

average, are much less common.

The ability to use longer trajectories allows us to apply the new integrated instantaneous

fluctuation relation to a numerical system on the approach to the steady state. The theorem

is now written in terms of a single value at each point in time, which makes monitoring the

system’s behaviour with time easier.

8.2 Demonstration of the Integrated Instantaneous Fluc-

tuation Theorem

To demonstrate this theorem we need to choose a nonequilibrium system to study. We

consider using the shear flow system used to demonstrate the original version of the Instan-

taneous Fluctuation Theorem in Chapter 7, however we would need to reduce the number

of particles in the system to be able to extend the trajectories into the steady state. The

Couette flow model is not well suited to systems with few particles because the equations

of motion become non-autonomous, as discussed in Section 3.1.5. The limitations of the

SLLOD equations of motion for this case are discussed below.
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Figure 8.1: Behaviour of the ensemble average of the instantaneous value of the phase
function V Pxy as a function of the time since the system began to shear.

8.2.1 Limitations of the Couette Flow System

A shear flow system relaxes to an unphysical periodic state rather than a steady state when

a small number of particles are used in the simulation. This behaviour has been observed

for two-particle planar-couette flow systems[133, 134], and is because the periodic boundary

conditions used are not autonomous[105].

As an example, we can simulate a system similar to what was used in Chapter 7. We will

use SLLOD equations of motion, Eq. (2.13) and (2.14), in a system with temperature T = 1,

density ρ = 0.6 and a time step of dt = 0.001. The system starts in an equilibrium canonical

ensemble and 105 trajectories are simulated. We will use a two dimensional system of 8

WCA particles, and a trajectory length long enough that the system should be approaching

a steady state. Selecting the phase function B = V Pxy, we can investigate its instantaneous

value as the system moves away from equilibrium. This was done in Figure 8.1, where the

average instantaneous value of V Pxy is plotted against time.

We can see that the value of V Pxy is time dependent and periodic. This is a consequence

of the periodic boundary conditions used and is unphysical. Clearly this system can not be
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used to study the Integrated Instantaneous Fluctuation Theorem on the approach to a steady

state, as the relative probability of positive to negative values of the phase function V Pxy

is meaningless, and the system does not approach a steady state.

8.2.2 Colour Conductivity System

Instead, we choose a system that starts in the equilibrium isokinetic ensemble, then pro-

gresses towards a steady state when a colour field is applied. This is described in Sec-

tion 2.3.2, with the equations of motion given by Eq. (2.18) and (2.19) The kinetic energy of

the system is kept constant by the thermostat[34] given by Eq. (2.20). We will use a system

of N = 8 particles. The simulations used a temperature of T = 1, a density of ρ = 0.6 and

a time step of dt = 0.001. Transient trajectories were initiated from random positions taken

from the equilibrium ensemble and then propagated using the equations of motion with a

constant colour field applied in the x direction, Fe = (Fex, 0) = (0.5, 0). An ensemble of 108

trajectories was used.

We can demonstrate the new theorem using a phase function which is odd under the

time reversal mapping. A convenient phase function to use is

B(Γ) = −J(Γ)V · Fe =
N
∑

i=1

ci
pi

m
· Fe = Fex

N
∑

i=1

ci
pxi

m
(8.6)

where J is the dissipative flux, pxi is the x−component of the peculiar momenta of particle

i and in our 2D system V is the area of the unit cell.

We would expect that the conditional average with more members will give better statis-

tics, so will use Eq. (8.3) as positive values of −J(Γ)V ·Fe are more probable in this system.

To demonstrate this new integrated fluctuation relation we need to calculate the relative

probability of all negative values of B(Γ) to all positive values, p−(t1)/p+(t1). This was

done by taking an ensemble of trajectories and calculating the relative frequency of negative

to positive values. The form of the dissipation function for this system is well known[34],

and is given by

Ω2t1(Γ; 0) = −
ˆ 2t1

0
dsβJ(Γ)V ·Fe =

ˆ 2t1

0
dsβFex

N
∑

i=1

ci
pxi

m
. (8.7)

Its value was calculated over the interval (0, 2t1) for each trajectory and was included in

the conditional average ⟨e−Ω2t1 (Γ;0)⟩B(St1Γ)>0 when the value of −J(Γ)V · Fe was positive

at time t1. To look at how the behaviour of the system changes with time we calculate

p−(t1)/p+(t1) and ⟨e−Ω2t1 (Γ;0)⟩B(St1Γ)>0 for a range of values of t1 along each trajectory as

it moves towards a steady state.

8.2.3 Numerical Results

The behaviour of the LHS and RHS of Equation (8.3) as a function of the trajectory length,

t1, is plotted in Figure 8.2. We can see that as the length of the trajectory increases and

the system is closer to being in a steady state, the relative probability of positive and
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negative fluctuations approaches a constant value, as expected. This trend is matched by

the conditional average. We can see that the LHS and RHS appear equivalent, but the error

bars are not visible on the scale shown.

The error bars were calculated by splitting the ensemble of trajectories into 10 groups

and calculating both sides of the equation in each one, then using these values to calculate

the standard error. Twice the standard error, the 95% confidence interval, was used as the

error bars in Figure 8.2. The error bars on both variables were summed to give the error

bar range, which is compared to the difference between the variables in Figure 8.3. We can

see that the difference is within the 95% confidence interval for all times, demonstrating the

new relation.

8.3 Derivation of the Steady State Form

We can look at the behaviour of the Integrated Instantaneous FT in the steady state. We

will start by assuming the value of the dissipation function is delta correlated. That is, there

is no serial correlation in the time series data for the instantaneous dissipation function, nor

any between the instantaneous dissipation function and the phase function B. This allows

us to rewrite Eq. (8.3) as

p−(t1)

p+(t1)
= ⟨e−Ωt1 (Γ;0)⟩⟨e−Ω0(St1Γ;0)⟩B(St1Γ)>0⟨e−Ωt1 (St1Γ;0)⟩. (8.8)

From the Nonequilibrium Partition Identity we have ⟨e−Ωt1 (Γ;0)⟩ = 1 and ⟨e−Ωt1 (St1Γ;0)⟩ = 1

(since ⟨e−Ω2t1 (Γ;0)⟩ = ⟨e−Ωt1 (Γ;0)⟩⟨e−Ωt1 (St1Γ;0)⟩ = 1 for delta correlated systems).

109



-0.008

-0.006

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0.008

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5
time, t1

Uncertainty in the Demonstration of the 
 Integrated Instantaneous Fluctuation Theorem
〈exp[-Ω2t1(Γ;0)]〉B(St1Γ)>0 - p-(t1)/p+(t1)

Error bar range

Figure 8.3: The difference between the LHS and the RHS of Eq. (8.3), the Integrated
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Now,
p−(t1)

p+(t1)
= ⟨e−Ω0(St1Γ;0)⟩B(St1Γ)>0 (8.9)

which in the steady state is constant, as expected.

For systems which are not delta correlated the condition on the average will affect more

than just one instant in time. For a T-mixing system the correlations of the dissipation

function will decay to an arbitrarily fine tolerance after some cut off time, cτM (a multiple

of the Maxwell time τM ). So, if we split the conditional average into three parts, the part

containing the condition must include the interval (t1−cτM , t1+cτM ). This means the parts

of the trajectory affected by the condition will be included in the conditional average. There

will be some error introduced due to the correlation between each of the sections that have

been split up in the average, as well as an error introduced in assuming delta correlation to

give the value of ⟨e−Ωt1 (St1Γ;0)⟩ = 1. We can write the approximate form of the Integrated

Instantaneous FT as

p−(t1)

p+(t1)
= ⟨e−Ω2cτM (St1−cτM Γ;0)⟩B(St1Γ)>0. (8.10)

If this interval is in the steady state then the relative probability of positive to negative

values of B will be constant with respect to t1, as expected. This relationship will only be

valid for dissipation function integrals over a large enough range around the point in time at

which we are computing the relative probability. We will call this the steady state trajectory

length, τ = 2cτM . We can use computer simulations to investigate the trajectory length

required.

We saw in Section 6.4 that for non-delta correlated systems the steady state NPI is not
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Figure 8.4: Schematic diagram illustrating the computational procedure to generate an
ensemble of steady state trajectories. Each ensemble member is initiated from a different
position in the equilibrium ensemble.

equal to unity. The third section in Eq. (8.8) is the steady state NPI, and will not have a

value of unity. This demonstrates that assuming delta correlation to split up the exponential

averages introduces an error. We can use computer simulations to further investigate the

behaviour of these exponential averages and test the approximations made in arriving at

Eq. (8.10).

8.4 Numerical Test of the Steady State Form

To test the steady state form of the relation computationally we need to initiate our trajec-

tories from within the steady state. We use the same colour conductivity system described

in Section 8.2.2, but don’t start recording the path integral of the dissipation function until

after the system has reached a steady state. Each trajectory was generated by initiating the

system from a different equilibrium position, and running a transient trajectory for a length

of 6 (i.e., t1− τ/2 = 6). After this time the system was assumed to be in a steady state, and

the steady state trajectory is recorded. The simulation is then continued for an additional

time of 6 to allow for the calculation of averages in the final steady state trajectory. This

computational procedure is illustrated in Figure 8.4. The simulation parameters are the

same as described in Section 8.2.2.

The LHS and the RHS of Eq. (8.10) are both plotted against the steady state trajectory

length in Figure 8.5. We can see that the relative probability of negative values of B

to positive values is constant as expected. While the conditional average converges to a

constant value with increasing trajectory length, this value is not within the uncertainty of

the relative probability.

The value of the conditional average (at τ = 10) and the relative probabilities were

calculated for a range of field strengths, presented in Table 8.1. In each case, the steady

state form of the new FT is not satisfied. The difference between the LHS and RHS of

Eq. (8.10) increases with field strength. The shape of the trend of the conditional average
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with trajectory length is not presented, but was the same as observed in Figure 8.5 for all

field strengths.

To understand the source of this deviation between the LHS and RHS of Eq. (8.10)

we can consider the approximations made in deriving this steady state form of the FT.

The transient ensemble average was split into three segments; the unconditional average

of the initial transient section, the conditional average of the middle steady state section

(plotted in Figure 8.5), and the unconditional average of the steady state section. This

involved assuming that the condition does not affect the first and last section when the

middle steady state section is sufficiently long. We can test this assumption by calculating

each of the sections using the simulated system, with the condition applied. This condition,

B > 0, will be applied at time t1, with the distance between the condition and the outer

Fex
p−(t1)
p+(t1) ⟨e−Ωτ (St1−τ/2

Γ;0)⟩B(St1Γ)>0 Percentage difference

0.71 0.606 0.536 12%
0.5 0.705 0.667 5.4%
0.29 0.817 0.803 1.7%
0.17 0.888 0.883 0.6%
0.043 0.971 0.970 0.1%

Table 8.1: The conditional average in the steady state form of the Integrated Instantaneous
Fluctuation Theorem, Eq. (8.10), and its expected value, the relative probability of negative
values of the phase function at time t1. The time t1 is in the steady state. The percentage
difference between these values are calculated. Results are from the colour conductivity
simulation, conducted with a range of applied field strengths, Fex.
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which is a measure of how far the applied condition is from the trajectories used to calculate
the averages shown.

sections determined by the length of the steady state trajectory, τ . The value of both of

these conditional averages is plotted against the steady state trajectory length in Figure 8.6.

As the length of the steady state trajectory grows, and there is a sufficiently long distance

between the trajectory used in the average and the applied condition, both of these averages

approach a constant value. This implies that at this time the averages are uncorrelated from

the condition. The initial transient average approaches a value of unity, as expected from

the transient NPI. The steady state average approaches a value that is not equal to unity,

consistent with what was observed for the steady state NPI in Section 6.4.

The other approximation used in deriving the steady state form of this FT was assum-

ing that the conditional average could be written as three separate averages. To test this

assumption we can multiply each of the calculated sections together, and compare it to

the value of the conditional average calculated over the entire transient trajectory, which

includes the steady state sections. Both of these functions are plotted in Figure 8.7, along

with the value of the relative probabilities. The conditional average calculated over the full

length of the trajectory is equal to the probability of negative values of the phase function

relative to the probability of positive values, as expected. We can clearly see that the prod-

uct of the conditional averages from the first, middle and final trajectory segments is not

equal of the conditional average for the full length of the trajectory.

These two approximations made in deriving the steady state form of the fluctuation

theorem mean that the value of the steady state conditional average is not equal to the

value of the relative probability.
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Figure 8.7: The conditional average in the transient Integrated Instantaneous FT,
Eq. (8.3), compared to the product of three segment averages. The product of the

individual segment averages = ⟨e−Ωt1−τ/2
(Γ;0)⟩B(St1Γ)>0 × ⟨e−Ωτ (St1−τ/2
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t1+τ/2Γ;0)⟩B(St1Γ)>0. Each of these averages is plotted individually in Fig-
ures 8.5 and 8.6. The relative probabilities of the negative to positive values of B are
shown to demonstrate that the full length transient conditional average satisfies the tran-
sient version of the Integrated Instantaneous FT.

8.4.1 Truncated Steady State Form

We can attempt to improve the statistics of the calculation of the conditional average in

Eq. (8.10) by truncating the distribution symmetrically around zero, as was done in calcu-

lating the truncated NPI in Section 5.9. The truncated average,

⟨e−Ωτ (St1−τ/2
Γ;0)⟩B(St1Γ)>0,−R<Ωτ <R (8.11)

is plotted against the truncation range in Figure 8.8. A steady state trajectory length of

τ = 6 was used for these results.

The truncated form of the average starts at a value of unity when a very small range is

used, then quickly falls to the untrunctated value. Truncating the range of dissipation func-

tion values used does not bring the average any closer to the value of the relative probability,

and is not a viable method for calculating this nonequilibrium exponential average.

8.4.2 Renormalized Steady State Form

We have established that both of the approximations made in deriving the steady state

form contribute to the deviation of the value of the conditional average from the relative

probability. The percentage difference between the value of the conditional average and the

relative probability is dependent on the field strength in the system. We can note from

Table 8.2 that this difference appears to be the same as the percentage difference between
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the value of the steady state NPI and unity. The steady state NPI is the same average as

the conditional average, calculated over the full ensemble. To exploit this we will calculate

the value of

⟨e−Ωτ (St1−τ/2
Γ;0)⟩B(St1Γ)>0

⟨e−Ωτ (St1−τ/2Γ;0)⟩
(8.12)

and compare its value to p−(t1)
p+(t1) . This is effectively renormalising the conditional average by

the steady state NPI. The relative probabilities and the explicitly renormalized average are

plotted in Figure 8.9 for a range of trajectory lengths.

As the length of the steady state trajectory increases, the renormalized conditional aver-

age in Eq. (8.12) approaches the relative probability. Renormalising the conditional average

Fex Difference in LHS and RHS of the Steady
State Integrated Instantaneous FT,

Eq. (8.10)

Steady state
NPI

Difference between
NPI and unity

0.71 12% 0.896 10%
0.5 5.4% 0.949 5.1%
0.29 1.7% 0.982 1.8%
0.17 0.6% 0.994 0.6%
0.043 0.1% 0.9996 0.04%

Table 8.2: Relationship between the conditional average of the Steady State Integrated

Instantaneous Fluctuation Theorem, ⟨e−Ωτ (St1−τ/2
Γ;0)⟩B(St1Γ)>0, and its expected value,

the relative probability, given for a range of field strengths used in the simulation. The
percentage difference between the steady state NPI and unity is also given for comparison.
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Figure 8.9: Test of the renormalized conditional average, shown as red squares, plotted
against the relative probability, shown as blue circles. The simulation data is plotted for a
range of steady state trajectory lengths. The simulation used a field strength of 0.5.

has corrected its value to what was expected from the delta correlated derivation, for suffi-

ciently long trajectory lengths.

When the trajectory is long enough, the applied condition only affects parts of the

trajectory that are included in the middle steady state average. In this simulated system

that time is approximately 3, meaning the condition is a time of 1.5 from the edge of the

steady state trajectory on each side.

8.5 Conclusion

We have derived an integrated form of the Instantaneous Fluctuation Theorem. This form

shows better statistics than the original, and so it could be demonstrated computationally in

a system approaching a steady state. A new form of the theorem applicable to systems that

start in the steady state was investigated. This form of the theorem was derived exactly for

the delta correlated case. For non-delta correlated systems we observed that the assumptions

made in deriving the relationship resulted in a deviation between the value of the conditional

average in the steady state and the relative probability. This error could be corrected by

renormalising the conditional average with the steady state NPI.
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Chapter 9

Conclusions

This thesis has examined the significance of the dissipation function in a number of applica-

tions in nonequilibrium statistical mechanics. Chapter 1 introduced the problems provoking

the need for the fluctuation theorems. In Chapter 2 the dissipation function was introduced,

a critical part of the Evans-Searles Fluctuation Theorem. The most significant results in-

volving the dissipation function to date were also covered. Chapter 3 outlined the computer

simulation techniques necessary for the investigations in this thesis.

In Chapter 4 we applied a number of the significant results involving the dissipation

function to systems relaxing monotonically and non-monotonically towards equilibrium. We

used these systems to demonstrate the Second Law Inequality and the Dissipation Theo-

rem. For systems undergoing field free relaxation from a colour gradient, the dissipation

function relaxes monotonically, while the colour density distribution decayed to a sine curve

of fundamental wavelength, which decayed conformally towards a uniform distribution. The

dissipation function was also monitored in systems relaxing from a density gradient affecting

all particles, and non-monotonic relaxation was observed. The density distribution function

did not relax conformally, and at times appeared to be moving away from a uniform distri-

bution.

The Nonequilibrium Partition Identity is discussed in Chapter 5. While the value of this

average involving the dissipation function is simply derived from the ES-FT, it can also be

derived to have a different value when other approximations are made. We show that both

of these values are observable, under different simulation conditions.

Calculating the average which is the subject of the NPI proves difficult in computational

and experimental systems. We first approach this problem by examining the uncertainty

and asymmetry in data arising from demonstrating the fluctuation theorem. We used the

fluctuation theorem itself to model the range of values we expect to measure for the frequency

of each value of the dissipation function. This was done by modeling each histogram bin

with a binomial distribution. This allowed us to see the asymmetry involved in the wings

of the distribution of dissipation function values when demonstrating the ES-FT. We also

constructed a method for sensibly weighting the data when demonstrating the fluctuation

theorem, which will be useful for many experimental and computational studies. We extend

this process to calculate the expected range of values for the NPI when it is calculated using
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only one pair of histogram bins from the distribution of the dissipation function, providing

valuable insight into the mechanism of the difficulty in calculating the value of the full NPI.

A new truncated form of ensemble average is derived, which eliminates some of the problems

caused by a lack of statistics, and can be calculated more easily than the full average.

Chapter 6 extends this work to the less studied steady state form of the NPI. We show

that while the asymptotic steady state FT from which it is derived converges, the steady state

NPI never reaches the expected value of unity. This was observed in computer simulations

and proven for the linear response regime, where the distribution of dissipation function

values is Gaussian. The value of the NPI is dependent on the autocorrelation function of

the dissipative flux, and in the special delta correlated case it is equal to unity.

A new result involving the dissipation function was derived and demonstrated in Chapter

7. This new Instantaneous Fluctuation Theorem has the same form as previous fluctuation

relations, but provides different information. It considers path integrals of the dissipation

function that are symmetrically extended both before and after the time at which the relative

probabilities are compared. We demonstrated computationally that time reversibility for the

trajectory/antitrajectory sets is a necessary condition for this fluctuation theorem to hold.

In Chapter 8 this work was extended by deriving an integrated form of the Instantaneous

Fluctuation Theorem. This was demonstrated in a system approaching a steady state. We

also investigated a form of the theorem applicable to systems already in the steady state.

This is a desirable class of systems to study because they are more accessible experimentally.

The steady state form of the theorem was derived exactly for delta correlated systems, but

for realistic non-delta correlated systems it was found that the assumptions made in the

derivation resulted in a deviation between the value of the conditional average in the steady

state and the relative probability. This systematic error could be corrected by renormalising

the average by the steady state NPI.

We have seen that the dissipation function can be useful in studying nonequilibrium

systems since it is the argument in a number of exact results, such as the ES-FT, the Relax-

ation Theorem and the Dissipation Theorem. Ensemble averages of the exponential of the

negative dissipation function have been studied in this thesis in the form of the conditional

average encountered in the Instantaneous Fluctuation Theorem, the NPI and the steady

state NPI. We have seen that these quantities can be difficult to calculate computationally,

and looked into the mechanism of this difficulty and approaches to resolve it.
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